Bài tập trắc nghiệm trang 216 SBT đại số và giải tích 11
Giải bài tập trắc nghiệm trang 216 sách bài tập đại số và giải tích 11
Chọn đáp án đúng:
5.105
Cho \(y = \dfrac{{x - 2}}{{x + 3}}\).Tìm y''.
Lời giải chi tiết:
\(\begin{array}{l}y = \dfrac{{x - 2}}{{x + 3}} = \dfrac{{x + 3 - 5}}{{x + 3}}\\ = \dfrac{{x + 3}}{{x + 3}} - \dfrac{5}{{x + 3}} = 1 - \dfrac{5}{{x + 3}}\\y' = - \dfrac{{ - 5\left( {x + 3} \right)'}}{{{{\left( {x + 3} \right)}^2}}} = \dfrac{5}{{{{\left( {x + 3} \right)}^2}}}\\y'' = \dfrac{{ - 5\left( {{{\left( {x + 3} \right)}^2}} \right)'}}{{{{\left( {x + 3} \right)}^4}}}\\ = \dfrac{{ - 5.2\left( {x + 3} \right)\left( {x + 3} \right)'}}{{{{\left( {x + 3} \right)}^4}}}\\ = \dfrac{{ - 10}}{{{{\left( {x + 3} \right)}^3}}}\end{array}\)
Chọn đáp án: B
5.106
Tìm đạo hàm cấp hai của hàm số \(y = \sqrt[3]{x}\)
Lời giải chi tiết:
\(\begin{array}{l}y = \sqrt[3]{x} = {x^{\dfrac{1}{3}}}\\y' = \dfrac{1}{3}{x^{\dfrac{1}{3} - 1}} = \dfrac{1}{3}{x^{ - \dfrac{2}{3}}}\\y'' = \dfrac{1}{3}.\left( { - \dfrac{2}{3}} \right){x^{ - \dfrac{2}{3} - 1}}\\ = - \dfrac{2}{9}{x^{ - \dfrac{5}{3}}} = - \dfrac{2}{{9{x^{\dfrac{5}{3}}}}} = - \dfrac{2}{{9\sqrt[3]{{{x^5}}}}}\end{array}\)
Chọn đáp án: C
5.107
Cho hàm số y = sin3x.cosx. Tìm y''.
A. y'' = -8sin4x - 2sin2x
B. y'' = 8sin4x + 2sin2x
C. y'' = -4sin4x - 2sin2x
D. y'' = -8sin4x + 2sin2x
Phương pháp giải:
Biến đổi sin3xcosx = 1/2[sin4x + sin2x].
Lời giải chi tiết:
\(\begin{array}{l}y = \sin 3x\cos x\\ = \dfrac{1}{2}\left( {\sin 4x + \sin 2x} \right)\\y' = \dfrac{1}{2}\left( {4\cos 4x + 2\cos 2x} \right)\\y'' = \dfrac{1}{2}\left[ {4.\left( { - 4\sin 4x} \right) + 2.\left( { - 2\sin 2x} \right)} \right]\\ = - 8\sin 4x - 2\sin 2x\end{array}\)
Chọn đáp án: A
5.108
Tìm đạo hàm cấp hai y'' của \(y = \sqrt x \)
Lời giải chi tiết:
\(\begin{array}{l}y = \sqrt x = {x^{\dfrac{1}{2}}}\\y' = \left( {{x^{\dfrac{1}{2}}}} \right)' = \dfrac{1}{2}{x^{\dfrac{1}{2} - 1}} = \dfrac{1}{2}{x^{ - \dfrac{1}{2}}}\\y'' = \dfrac{1}{2}.\left( { - \dfrac{1}{2}} \right){x^{ - \dfrac{1}{2} - 1}} = - \dfrac{1}{4}{x^{ - \dfrac{3}{2}}}\\ = - \dfrac{1}{{4{x^{\dfrac{3}{2}}}}} = - \dfrac{1}{{4\sqrt {{x^3}} }} = - \dfrac{1}{{4x\sqrt x }}\end{array}\)
Chọn đáp án: D
5.109
Tìm y'', biết \(y = \dfrac{{{x^2}}}{{1 - x}}\)
Phương pháp giải:
Có thể chia cho mẫu để được \(y = - x - 1 - \dfrac{1}{{x - 1}}\) trước khi lấy đạo hàm.
Lời giải chi tiết:
\(\begin{array}{l}y = \dfrac{{{x^2}}}{{1 - x}} = \dfrac{{{x^2} - 1 + 1}}{{1 - x}}\\ = \dfrac{{{x^2} - 1}}{{1 - x}} + \dfrac{1}{{1 - x}}\\ = - x - 1 - \dfrac{1}{{x - 1}}\\y' = - 1 - \dfrac{{ - \left( {x - 1} \right)'}}{{{{\left( {x - 1} \right)}^2}}}\\ = - 1 + \dfrac{1}{{{{\left( {x - 1} \right)}^2}}}\\y'' = - \dfrac{{\left[ {{{\left( {x - 1} \right)}^2}} \right]'}}{{{{\left( {x - 1} \right)}^4}}}\\ = - \dfrac{{2\left( {x - 1} \right)\left( {x - 1} \right)'}}{{{{\left( {x - 1} \right)}^4}}}\\ = - \dfrac{2}{{{{\left( {x - 1} \right)}^3}}} = \dfrac{2}{{{{\left( {1 - x} \right)}^3}}}\end{array}\)
Chọn đáp án: C
5.110
Cho hàm số f(x) = cos3x. Tính f''(π/3)
A. -1 B. -2 C. 1/3 D. 9
Lời giải chi tiết:
\(\begin{array}{l}f'\left( x \right) = - 3\sin 3x\\f''\left( x \right) = - 3.3\cos 3x\\ = - 9\cos 3x\\f''\left( {\dfrac{\pi }{3}} \right) = - 9\cos \left( {3.\dfrac{\pi }{3}} \right)\\ = - 9\cos \pi = - 9.\left( { - 1} \right) = 9\end{array}\)
Chọn đáp án: D
5.111
Cho hàm số g(t) = sin22t. Tính g''(π/8), g''(π/12)
A. 0; 4 B. 1; 4
C. 1; 2 D. 3; 1
Lời giải chi tiết:
\(\begin{array}{l}g\left( t \right) = {\sin ^2}2t = \dfrac{{1 - \cos 4t}}{2}\\ = \dfrac{1}{2} - \dfrac{1}{2}\cos 4t\\g'\left( t \right) = - \dfrac{1}{2}\left( { - 4\sin 4t} \right) = 2\sin 4t\\g''\left( t \right) = 2.4\cos 4t = 8\cos 4t\\g''\left( {\dfrac{\pi }{8}} \right) = 8\cos \dfrac{\pi }{2} = 0\\g''\left( {\dfrac{\pi }{{12}}} \right) = 8\cos \dfrac{\pi }{3} = 8.\dfrac{1}{2} = 4\end{array}\)
Chọn đáp án: A
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài tập trắc nghiệm trang 216 SBT đại số và giải tích 11 timdapan.com"