Bài 5.102 trang 215 SBT đại số và giải tích 11
Giải bài 5.102 trang 215 sách bài tập đại số và giải tích 11. Tìm đạo hàm cấp hai của hàm số sau:..
Đề bài
Tìm đạo hàm cấp hai của hàm số sau:
\(y = {1 \over {\sqrt x }}.\)
Phương pháp giải - Xem chi tiết
Tính đạo hàm cấp 1 rồi tính tiếp đạo hàm cấp 2 của hàm số.
Lời giải chi tiết
\(\begin{array}{l}
y' = \dfrac{{ - \left( {\sqrt x } \right)'}}{{{{\left( {\sqrt x } \right)}^2}}} = - \dfrac{{\dfrac{1}{{2\sqrt x }}}}{x} = - \dfrac{1}{{2x\sqrt x }}\\
y'' = - \dfrac{1}{2}.\dfrac{{ - \left( {x\sqrt x } \right)'}}{{{{\left( {x\sqrt x } \right)}^2}}}\\
= \dfrac{1}{2}.\dfrac{{\left( x \right)'\sqrt x + x\left( {\sqrt x } \right)'}}{{{x^2}.x}}\\
= \dfrac{1}{{2{x^5}}}\left( {\sqrt x + x.\dfrac{1}{{2\sqrt x }}} \right)\\
= \dfrac{1}{{2{x^3}}}.\dfrac{{2x + x}}{{2\sqrt x }}\\
= \dfrac{{3x}}{{4{x^3}\sqrt x }} = \dfrac{3}{{4{x^2}\sqrt x }}
\end{array}\)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 5.102 trang 215 SBT đại số và giải tích 11 timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 5.102 trang 215 SBT đại số và giải tích 11 timdapan.com"