Đề kiểm tra 45 phút (1 tiết) – Đề số 1 – Chương III - Giải tích 12

Đáp án và lời giải chi tiết Đề kiểm tra 45 phút (1 tiết) – Đề số 1 – Chương III - Giải tích 12


Đề bài

Câu 1. Cho hình (H) giới hạn bởi đường cong \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:

A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \). 

B. \(V = \pi \int\limits_0^1 {{y^2}\,dy} \).

C. \(V = \pi \int\limits_0^1 {{y^4}\,dy} \).          

D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy} \).

Câu 2. Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?

A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).  

B. \(I = 2004\int\limits_0^\pi  {\sqrt {1 - \cos 2x} } \,dx\).

C. \(I = 4008\sqrt 2 \).        

D. \(I = 2004\sqrt 2 \int\limits_0^\pi  {\sin x\,dx} \).

Câu 3. Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).

A. \(4\cos x + \ln x + C\). 

B. \(4\cos x + \dfrac{1}{x} + C\).

C. \(4\sin x - \dfrac{1}{x} + C\).   

D. \(4\sin x + \dfrac{1}{x} + C\).

Câu 4. Mệnh đề nào sau đây là sai ?

A. \(\int\limits_a^c {f(x)\,dx = \int\limits_a^b {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).

B. \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx - \int\limits_b^c {f(x)\,dx} } } \).

C. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f(x)\,dx + \int\limits_a^c {f(x)\,dx} } } \).

D.  \(\int\limits_a^b {cf(x)\,dx =  - c\int\limits_b^a {f(x)\,dx} } \)

Câu 5. Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:

A. \( - {\sin ^4}x + C\).                 

B. \(\dfrac{1}{4}{\sin ^4}x + C\).

C. \( - \dfrac{1}{4}{\sin ^4}x + C\).                  

D. \({\sin ^4}x + C\).

Câu 6. Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y =  - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :

A. \(S = \pi \).    

B. \(S = 2\pi \).

C. \(S = \dfrac{\pi }{2}\).               

D. Cả 3 phương án trên đều sai.

Câu 7. Gọi \(\int {{{2009}^x}\,dx}  = F(x) + C\) . Khi đó F(x) là hàm số:

A. \({2009^x}\ln 2009\).          

B. \(\dfrac{{{{2009}^x}}}{{\ln 2009}}\).

C. \({2009^x} + 1\).                     

D. \({2009^x}\).

Câu 8. Cho tích phân \(I = \int\limits_a^b {f\left( x \right).g'\left( x \right){\text{d}}x} ,\) nếu đặt 

\(\left\{ \matrix{
u = f\left( x \right) \hfill \cr
{\rm{d}}v = g'\left( x \right){\rm{d}}x \hfill \cr} \right.\) thì:

A. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)

B. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g\left( x \right){\rm{d}}x} .\)

C. \(I = \left. {f\left( x \right).g\left( x \right)} \right|_a^b - \int\limits_a^b {f'\left( x \right).g\left( x \right){\rm{d}}x} .\)

D. \(I = \left. {f\left( x \right).g'\left( x \right)} \right|_a^b - \int\limits_a^b {f\left( x \right).g'\left( x \right){\rm{d}}x} .\)

Câu 9. Giả sử \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \ln K} \). Giá trị của K là:

A. 1                                 B. 3  

C. 80                               D. 9.

Câu 10. Nếu \(\int\limits_a^d {f(x)\,dx = 5\,,\,\,\int\limits_b^d {f(x)\,dx = 2} \,} \) với a  < d < b thì \(\int\limits_a^b {f(x)\,dx} \) bằng :

A. 3 .                               B. 2          

C. 10                               D. 0

Câu 11. Nếu \(\int {f(x)\,dx = {e^x} + {{\sin }^2}x}  + C\) thì f(x) bằng

A. \({e^x} + 2\sin x\).     

B. \({e^x} + \sin 2x\).

C. \({e^x} + {\cos ^2}x\).                        

D. \({e^x} - 2\sin x\).

Câu 12. Trong các khẳng định sau, khẳng định nào sai ?

A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)

B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)

C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )

D. \(F(x) = {x^2}\) là một nguyên hàm của f(x) = 2x.

Câu 13. Tìm họ các nguyên hàm của hàm số f(x) = 2sinx.

A. \(\int {2\sin x\,dx = {{\sin }^2}x}  + C\). 

B. \(\int {2\sin x\,dx = 2\cos x}  + C\).

C. \(\int {2\sin x\,dx =  - 2\cos x}  + C\).  

D. \(\int {2\sin x\,dx = \sin 2x}  + C\).

Câu 14. Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(u = {x^2} - 2x + 3\), trục Ox và đường thẳng x = -1 , x =2 bằng :

A. \(\dfrac{1}{3}\)                           B. 17                

C. 7                            D. 9

Câu 15. Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \).

A. \(I = {e^{\dfrac{\pi }{2}}} + 2\).  

B. \(I = {e^{\dfrac{\pi }{2}}} + 1\).

C. \(I = {e^{\dfrac{\pi }{2}}} - 2\)              

D. \(I = {e^{\dfrac{\pi }{2}}}\).

Câu 16. Biết rằng hàm số \(f(x) = {\left( {6x + 1} \right)^2}\) có một nguyên hàm \(F(x) = a{x^3} + b{x^2} + cx + d\) thỏa mãn điều kiện F(-1.) 20. Tính tổng a + b + c + d.

A. 46                               B. 44  

C. 36                               D. 54

Câu 17. Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:

A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).   

B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).

C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\). 

D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)

Câu 18. Trong các mệnh đề sau, mệnh đề nào đúng ?

A. Hàm số \(y = \dfrac{1}{x}\) có nguyên hàm trên \(( - \infty ; + \infty )\).

B. \(3{x^2}\) là một nguyên hàm của \({x^3}\) trên \(( - \infty ; + \infty )\).

C. Hàm số \(y = |x|\) có nguyên hàm trên \(( - \infty ; + \infty )\).

D. \(\dfrac{1}{x} + C\) là họ nguyên hàm của lnx trên \((0; + \infty )\).

Câu 19. Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?

A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).

B. \({2^{\sqrt x }} + C\).

C. \({2^{\sqrt x  + 1}}\).                    

D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).

Câu 20. Đổi biến u = lnx thì tích phân \(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx} \) thành:

A. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,du} \)

B. \(I = \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}\,du} \).

C. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{ - u}}du} \).

D. \(I = \int\limits_1^0 {\left( {1 - u} \right)\,{e^{2u}}du} \).

Câu 21. Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được:

A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \). 

B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).

C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \). 

D. 0.

Câu 22. Tính nguyên hàm \(\int {{x^2}\sqrt {{x^3} + 5} } \,dx\) ta được kết quả là :

A. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\).  

B. \(\dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).

C. \(2{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\). 

D. \(2{\left( {{x^3} + 5} \right)^{\dfrac{2}{3}}} + C\).

Câu 23. Tính nguyên hàm \(\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \) ta thu được:

A. \(\cot x - 2\tan x + C\).  

B. \( - \cot x + 2\tan x + C\).

C. \(\cot x + 2\tan x + C\).  

D. \( - \cot x - 2\tan x + C\)  

Câu 24. Hàm số \(f(x) = x\sqrt {x + 1} \) có một nguyên hàm là F(x). Nếu F(0) = 2 thì F(3) bằng bao nhiêu ?

A. \(\dfrac{{146}}{{15}}\)                            B. \(\dfrac{{116}}{{15}}\)  

C. \(\dfrac{{886}}{{105}}\)                            D. \(\dfrac{{105}}{{886}}\).

Câu 25. Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).

A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).        

B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).

C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).   

D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).

Lời giải chi tiết

1

2

3

4

5

C

A

C

C

B

6

7

8

9

10

A

B

C

B

A

11

12

13

14

15

B

B

C

D

D

16

17

18

19

20

A

B

C

B

B

21

22

23

24

25

D

A

D

A

B

 Lời giải chi tiết 

Câu 1.

Hình phẳng được giới hạn bởi đồ thị hàm số \(x = g\left( y \right)\) liên tục trên \(\left[ {a;b} \right]\), trục \(Oy\) và hai đường thẳng \(y = a;y = b\) quay quanh trục \(Oy\) ta được khối tròn xoay có thể tích là: \({V_y} = \pi \int\limits_a^b {{g^2}\left( y \right)} \;dy\)

Áp dụng vào bài toán, ta có \({y^2} + x = 0 \Rightarrow x =  - {y^2}\).

Đồ thị hàm số \(x =  - {y^2}\) liên tục trên \(\left[ {0;1} \right]\), trục Oy và hai đường thẳng \(y = 0,\;y = 1\)

Khi đó thể tích khối tròn xoay tạo thành khi quay \(\left( H \right)\) quanh trục Oy được tính bởi:

\(V = \pi \int\limits_0^1 {\left( { - {y^2}} \right){\,^2}dy}  = V = \pi \int\limits_0^1 {{y^4}\,dy} .\)

Chọn đáp án C.

Câu 2.

Ta có:

\(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \)

\(\;\;\;= \int\limits_0^{2004\pi } {\sqrt {1 - \left( {1 - 2{{\sin }^2}x} \right)} \;dx}  \)

\(\;\;\;= \int\limits_0^{2004\pi } {\sqrt 2 \left| {\sin x} \right|\;dx} \)

\(\;\;\;= \sqrt 2 \left| {\cos x} \right|\left| {_0^{2004\pi }} \right.\)

\( \to \) Đáp án C sai.

Chọn đáp án C.

Câu 3.

Ta có \(\int {\left( {4\cos x + \dfrac{1}{{{x^2}}}} \right)} \;dx \)\(\,= 4\sin x - \dfrac{1}{x} + C.\)

Chọn đáp án C.

Câu 4.

Ta có: \(\int\limits_b^c {f\left( x \right)} \;dx = \int\limits_b^a {f\left( x \right)\,dx + \int\limits_a^c {f\left( {x\,} \right)dx} } \)

\( \to \) Đáp án C sai.

Chọn đáp án C.

Câu 5.

Ta có: \(\int {{{\sin }^3}x.\cos x\,dx}  = \int {{{\sin }^3}x\;d\left( {\sin x} \right)}\)\(\,  = \dfrac{1}{4}{\sin ^4}x + C.\)

Chọn đáp án B.

Câu 6.

Hình phẳng gới hạn bởi đồ thị hàm số \(y = {\sin ^2}x,\,\,y =  - {\cos ^2}x\) lên tục trên đoạn \(\left[ {\pi ;2\pi } \right]\) và hai đường thẳng \(x = \pi ,\,x = 2\pi \). Diện tích hình phẳng đó được xác định bởi công thức:

\(S = \int\limits_\pi ^{2\pi } \left| {{{\sin }^2}x - \left({  - {{\cos }^2}x} \right)} \right|dx \\\;\;\;=  \int\limits_\pi ^{2\pi } \left| {{{\sin }^2}x + {{\cos }^2}x} \right|dx \)\(\;\;\;= \int\limits_\pi ^{2\pi } {1.dx}  = x\left| {_\pi ^{2\pi }} \right.  = 2\pi  - \pi  = \pi \)

Chọn đáp án A.

Câu 7.

Áp dụng công thức \(\int {{a^x}\;dx}  = \dfrac{{{a^x}}}{{\ln a}}\; + C\)

Ta có: \(\int {{{2009}^x}\,dx}  = \dfrac{{{{2009}^x}}}{{\ln 2009}} + C\)

Chọn đáp án B.

Câu 8

Chọn đáp án C.

Câu 9.

Áp dụng công thức nguyên hàm \(\int {\dfrac{1}{{ax + b}}\;dx}  = \dfrac{1}{a}\ln \left| {ax + b} \right| + C\)

Khi đó ta có:

\(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = } \left( {\dfrac{1}{2}\ln \left| {2x - 1} \right|} \right)\left| {_{_{_1^{}}^{}}^{_{}^{_{}^5}}} \right. \)\(\,= \dfrac{1}{2}\ln 9 - \dfrac{1}{2}\ln 1 = \ln 3.\)

Chọn đáp án B.

Câu 10.

Ta có:

\(\left\{ \begin{array}{l}\int\limits_a^d {f\left( x \right)dx = 5\,} \\\int\limits_b^d {f\left( x \right)\,dx = 2} \,\end{array} \right. \\\Rightarrow \left\{ \begin{array}{l}\int\limits_a^d {f\left( x \right)dx = 5\,} \\ - \int\limits_d^b {f\left( x \right)\,dx = 2} \,\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}\int\limits_a^d {f\left( x \right)dx = 5\,} \\\int\limits_d^b {f\left( x \right)\,dx =  - 2} \,\end{array} \right.\)

Khi đó ta có: \(\int\limits_a^d {f\left( x \right)dx\, + \int\limits_d^b {f\left( x \right)\,dx} \,}  \)\(\,= 5 + \left( { - 2} \right) = 3.\)

Chọn đáp án A.

Câu 11.

Ta có

\(\left\{ \begin{array}{l}d\left( {{e^x}} \right) = {e^x}dx\\d\left( {{{\sin }^2}x} \right) = 2\sin x.\cos x\,dx\end{array} \right. \\ \Rightarrow \left\{ \begin{array}{l}d\left( {{e^x}} \right) = {e^x}dx\\d\left( {{{\sin }^2}x} \right) = \sin 2x\,dx\end{array} \right.\)

Khi đó ta có: \(f\left( x \right) = {e^x} + \sin 2x\)

Chọn đáp án B.

Câu 12.

Áp dụng tính chất, định lý về nguyên hàm – tích phân ta có:

+ Nếu \(f\left( x \right),\,g\left( x \right)\) là các hàm số liên tục trên R thì \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]} \,dx = \int {f\left( x \right)\,dx + \int {g\left( x \right)\,dx} } \)

+ Nếu các hàm số \(u\left( x \right),\;v\left( x \right)\)liên tục và có đạo hàm trên R thì \(\int {u\left( x \right)v'\left( {x\,} \right)dx + \int {v\left( x \right)u'\left( x \right)\,dx = u\left( x \right)v\left( x \right)} } \).

+ Ta có: \(\int {2x\,dx = {x^2} + C.} \)

\( \to \) Đáp án C sai.

Chọn đáp án C.

Câu 13.

Ta có: \(\int {f\left( x \right)} \,dx = \int {2\sin x\,dx}  \)\(\,=  - 2\cos x + C\)

Chọn đáp án C.

Câu 14.

Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x + 3\), trục Ox và đường thẳng \(x =  - 1,x = 2\) được xác định bằng công thức :\(S = \int\limits_{ - 1}^2 {\left( {{x^2} - 2x + 3} \right)\,dx} \)

Khi đó ta có:

 \(\begin{array}{l}S = \int\limits_{ - 1}^2 {\left( {{x^2} - 2x + 3} \right)\,dx} \\\,\,\,\, = \left( {\dfrac{{{x^3}}}{3} - {x^2} + 3x} \right)\left| \begin{array}{l}^2\\_{ - 1}\end{array} \right.\\\,\,\,\, = \left( {\dfrac{{{2^3}}}{3} - {2^2} + 3.2} \right) - \left( {\dfrac{{{{\left( { - 1} \right)}^3}}}{3} - {{\left( { - 1} \right)}^2} + 3.\left( { - 1} \right)} \right)\\\,\,\,\, = \dfrac{{14}}{3} - \left( { - \dfrac{{13}}{3}} \right) = \dfrac{{27}}{3} = 9\end{array}\)

Chọn đáp án D.

Câu 15.

Ta có:

\(I = \int\limits_0^{\dfrac{\pi }{2}} {\left( {\cos x + {e^x}} \right)\,dx} \)

\(\;\; = \left( {\sin x + {e^x}} \right)\left| {_{_{_{_0^{}}^{}}}^{\dfrac{\pi }{2}}} \right. \)

\(\;\;= \left( {\sin \dfrac{\pi }{2} + {e^{\dfrac{\pi }{2}}}} \right) - \left( {\sin 0 + {e^0}} \right)\)

\(\;\;= {e^{\dfrac{\pi }{2}}}.\)

Chọn đáp án D.

Câu 16.

Ta có \(f\left( x \right) = {\left( {6x + 1} \right)^2} = 36{x^2} + 12x + 1\)

Khi đó ta có: \(\int {\left( {36{x^2} + 12x + 1} \right)\,dx}  \)\(\,= 12{x^3} + 6{x^2} + x + d\)

\( \Rightarrow F\left( x \right) = 12{x^3} + 6{x^2} + x + d\)

Theo giải thiết ta có \(F\left( { - 1} \right) = 20 \)

\(\Rightarrow 12.\left( { - 1} \right){}^3 + 6.{\left( { - 1} \right)^2} + \left( { - 1} \right) + d = 20 \)

\(\Leftrightarrow d = 27\)

Vậy: \(a + b + c + d = 12 + 6 + 1 + 27 = 46.\)

Chọn đáp án A.

Câu 17.

Phương pháp tích phân từng phần

Đặt \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2x\,dx\\v = \sin x\end{array} \right.\)

Chọn đáp án B.

Câu 18. 

+ Hàm số \(y = \dfrac{1}{x}\) không liên tục trên \(\left( { - \infty ; + \infty } \right)\) thì không có nguyên hàm luên tục trên\(\left( { - \infty ; + \infty } \right)\)

\( \to \) Đáp án A sai.

+ Ta có: \(\int {{x^3}\,dx = \dfrac{{{x^4}}}{4} + C} \)\( \to \) Đáp án B sai.

+ Ta có: \(\int {\ln x\,dx} \)  . Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \dfrac{1}{x}dx\\v = x\end{array} \right.\)

Khi đó ta có: \(\int {\ln x\,dx}  = x\ln x - \int {x.\dfrac{1}{x}dx} \)\(\, = x\ln x - \int {dx}  = x\ln x - x + C\)

\( \to \) Đáp án D sai.

Chọn đáp án C.

Câu 19.

Ta có:

\(\int {{2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}dx}  \\= \int {{2^{\sqrt x }}\dfrac{{\ln {{\left( {\sqrt x } \right)}^2}}}{{\sqrt x }}} \,d\left( {{{\left( {\sqrt x } \right)}^2}} \right) \\= 4\int {{2^{\sqrt x }}\ln \left( {\sqrt x } \right)} \,d\left( {\sqrt x } \right)\\ = {2^{\sqrt x  + 1}} + C\)

Chọn đáp án B.

Câu 20.

Đặt \(\left\{ \begin{array}{l}u = \ln x \Rightarrow du = \dfrac{1}{x}dx\\u = \ln x \Rightarrow x = {e^u} \Rightarrow \dfrac{1}{x} = \dfrac{1}{{{e^u}}} = {e^{ - u}}\end{array} \right.\)

Đổi cận \(\left\{ \begin{array}{l}x = 1 \to u = 0\\x = e \to u = 1\end{array} \right.\)

Khi đó ta có:

\(I = \int\limits_1^e {\dfrac{{1 - \ln x}}{{{x^2}}}\,dx}  \\\;\;= \int\limits_1^e {\dfrac{{1 - \ln x}}{x}d\left( {\ln x} \right)}  \\\;\;= \int\limits_0^1 {\left( {1 - u} \right){e^{ - u}}} du\)

Chọn đáp án B.

Câu 21.

Đặt \(\left\{ \begin{array}{l}u = {x^3}\\dv = \cos xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 3{x^2}dx\\v = \sin x\end{array} \right.\)

Khi đó ta có:

\(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx}  \\= \left( {{x^3}\sin x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. - 3\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {\sin x.{x^2}dx} \)

Đặt \(I = \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^2}\sin x\,dx} \).            

Ta có: \(I = \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^2}\sin x\,dx} \)\(\, = \left( { - {x^2}\cos x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. + 2\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {\cos x.} \,xdx\)

Đặt \({I_1} = \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {x\cos xdx} \)

Ta có: \({I_1} = \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {x\cos xdx} \)\(\, = \left( {x\sin x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. - \int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {\sin xdx} \)

\( = \left( {\dfrac{\pi }{3}.\dfrac{{\sqrt 3 }}{2} - \left( { - \dfrac{\pi }{3}} \right)\left( { - \dfrac{{\sqrt 3 }}{2}} \right)} \right) - \left( { - \cos x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right.\)\( = 0 - \left( { - \dfrac{1}{2} - \left( { - \dfrac{1}{2}} \right)} \right) = 0\)

Khi đó \(I = \left( { - {x^2}\cos x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. \)\(\,= \left( { - \dfrac{{{\pi ^2}}}{9}.\dfrac{1}{2}} \right) - \left( { - \dfrac{{{\pi ^2}}}{9}.\dfrac{1}{2}} \right) = 0\)

Khi đó \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx}\)\(\,  = \left( {{x^3}\sin x} \right)\left| {_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}}} \right. \)\(\,= \dfrac{{{\pi ^3}}}{{27}}.\dfrac{{\sqrt 3 }}{2} - \left( { - \dfrac{{{\pi ^3}}}{{27}}} \right)\left( { - \dfrac{{\sqrt 3 }}{2}} \right) = 0\)

Chọn đáp án D.

Câu 22.

Ta có:

\(\int {{x^2}\sqrt {{x^3} + 5} } \,dx \)

\(= \dfrac{1}{3}\int {\sqrt {{x^3} + 5} } \,d\left( {{x^3} + 5} \right) \)

\(= \dfrac{1}{3}\int {{{\left( {{x^3} + 5} \right)}^{\dfrac{1}{2}}}} d\left( {{x^3} + 5} \right) \)

\(= \dfrac{2}{9}{\left( {{x^3} + 5} \right)^{\dfrac{3}{2}}} + C\)

Chọn đáp án A.

Câu 23.

Ta có: \(\begin{array}{l}\int {\dfrac{{1 - 2{{\tan }^2}x}}{{{{\sin }^2}x}}\,dx} \\ = \int {\left( {\dfrac{1}{{{{\sin }^2}x}} - \dfrac{2}{{{{\cos }^2}x}}} \right)\,dx} \\ = \int {\dfrac{1}{{{{\sin }^2}x}}\,dx - 2\int {\dfrac{1}{{{{\cos }^2}x}}dx} } \\ =  - \cot x - 2\tan x + C\end{array}\)

Chọn đáp án D.

Câu 24.

Ta có: \(\int {x\sqrt {x + 1} \,dx} \)

Đặt \(t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1\)\(, \Leftrightarrow x = t{}^2 - 1\)

\( \Rightarrow dx = d\left( {{t^2} - 1} \right) = 2t\,dt\)

Khi đó ta có:

\(\begin{array}{l}\int {x\sqrt {x + 1} \,dx} \\ = \int {\left( {{t^2} - 1} \right)t.2tdt} \\ = 2\int {\left( {{t^4} - {t^2}} \right)dt} \\ = 2\left( {\dfrac{{{t^5}}}{5} - \dfrac{{{t^3}}}{3}} \right) + C\end{array}\)

Với \(\left\{ \begin{array}{l}x = 0 \to t = 1\\x = 3 \to t = 2\end{array} \right.\)         

Theo giải thiết \(F\left( 0 \right) = 2 \Rightarrow 2\left( {\dfrac{1}{5} - \dfrac{1}{3}} \right) + C = 2 \)\(\,\Leftrightarrow C = \dfrac{{34}}{{15}}\)

Khi đó \(F\left( {x = 3} \right) = F\left( {t = 2} \right) \)\(\,= 2\left( {\dfrac{{{2^5}}}{5} - \dfrac{{{2^3}}}{3}} \right) + \dfrac{{34}}{{15}} = \dfrac{{146}}{{15}}.\)

Chọn đáp án A.

Câu 25.

Ta có: \(\int {\left( {{e^x} + 2x} \right)\,} dx = {e^x} + {x^2} + C.\)

Theo giải thiết ta có: \(F\left( 0 \right) = \dfrac{3}{2} \)

\(\Rightarrow {e^0} + {0^2} + C = \dfrac{3}{2} \Rightarrow C = \dfrac{1}{2}\)

Khi đó ta có: \(F\left( x \right) = {e^x} + {x^2} + \dfrac{1}{2}\)

Chọn đáp án B.



Bài học liên quan

Từ khóa phổ biến