Bài 8 trang 93 SGK Hình học 10
Giải bài 8 trang 93 SGK Hình học 10. Tìm góc giữa hai đường thẳng Δ1 và Δ2 trong các trường hợp sau:
Tìm góc giữa hai đường thẳng \(\Delta_1\) và \(\Delta_2\) trong các trường hợp sau:
LG a
\(\Delta_1\): \(2x + y – 4 = 0\) ; \(\Delta_2\): \(5x – 2y + 3 = 0.\)
Lời giải chi tiết:
Vecto pháp tuyến \(\Delta_1\) là \(\overrightarrow {{n_1}} = (2;1)\)
Vecto pháp tuyến \({\Delta _2}\) là \(\overrightarrow {{n_2}} = (5; - 2)\)
\(\eqalign{
& \cos ({\Delta _1},{\Delta _2}) = {{|\overrightarrow {{n_1}} .\overrightarrow {{n_2}} |} \over {|\overrightarrow {{n_1}} |.|\overrightarrow {{n_2}} |}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,= {{|2.5 + 1.( - 2)|} \over {\sqrt 5 .\sqrt 9 }}\cr& \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,= {8 \over {\sqrt {145} }} \cr
& \Rightarrow ({\Delta _1},{\Delta _2}) \approx {48^0}21'59'' \cr} \)
LG b
\(\Delta_1\): \(y = -2x + 4\); \({\Delta _2}:y = {1 \over 2}x + {3 \over 2}.\)
Lời giải chi tiết:
\(y = -2x + 4 ⇔ 2x + y – 4 = 0\)
\(y = {1 \over 2}x + {3 \over 2} \Leftrightarrow x - 2y + 3 = 0\)
\({\Delta _1}\) có VTPT \(\overrightarrow {{n_1}} = \left( {2;1} \right)\)
\({\Delta _2}\) có VTPT \(\overrightarrow {{n_2}} = \left( {1;-2} \right)\)
\(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \dfrac{{\left| {2.1 + 1.\left( { - 2} \right)} \right|}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} }} = 0\) \( \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {90^0} \Rightarrow {\Delta _1} \bot {\Delta _2}\)
Chú ý:
- Hệ số góc của \(\Delta_1\) là \(k = -2\)
- Hệ số góc của \({\Delta _2}\) là \(k' = {1 \over 2}\)
Vì \(k.k' = 2.{1 \over 2} = - 1 \Rightarrow {\Delta _1} \bot {\Delta _2}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 8 trang 93 SGK Hình học 10 timdapan.com"