Câu 4.53 trang 184 sách bài tập Giải tích 12 Nâng cao

Viết dạng phương trình lượng giác của các số phức


Viết dạng phương trình lượng giác của các số phức

LG a

\({{1 - \left( {{\rm{cos}}\varphi  + isin\varphi } \right)} \over {1 + {\rm{cos}}\varphi  + isin\varphi }}\)

Giải chi tiết:

Do \({{1 - \left( {{\rm{cos}}\varphi  + isin\varphi } \right)} \over {1 + {\rm{cos}}\varphi  + isin\varphi }} =  - i\tan {\varphi  \over 2}\) nên:

Khi \(\tan {\varphi  \over 2} = 0\), số đó không có dạng lượng giác xác định.

Khi  \(\tan {\varphi  \over 2} > 0\), dạng lượng giác của nó là

\(\left( {  \tan {\varphi  \over 2}} \right)\left( {{\rm{cos}}{-\pi  \over 2} + isin{-\pi  \over 2}} \right)\)

Khi  \(\tan {\varphi  \over 2} <0\), dạng lượng giác của nó là

\(\left( { - \tan {\varphi  \over 2}} \right)\left( {{\rm{cos}}{\pi  \over 2} + isin{\pi  \over 2}} \right)\)


LG b

\(\left[ {1 - \left( {{\rm{cos}}\varphi  + isin\varphi } \right)} \right]\left( {1 + {\rm{cos}}\varphi  + isin\varphi } \right)\)

Giải chi tiết:

\(\left( {1 - {\rm{cos}}\varphi  - isin\varphi } \right)\left( {1 + {\rm{cos}}\varphi  + isin\varphi } \right) \)

\(= 2\sin \varphi \left( {\sin \varphi  - i\cos \varphi } \right)\)

\( = 2\sin \varphi \left[ {{\rm{cos}}\left( {\varphi  - {\pi  \over 2}} \right) + isin\left( {\varphi  - {\pi  \over 2}} \right)} \right]\)

Khi \(\sin \varphi  = 0,\) nó không có dạng lượng giác xác định

Khi \(\sin \varphi  > 0,\) dạng trên là dạng lượng giác của nó

Khi \(\sin \varphi  < 0,\) dạng lượng giác của nó là

\(\left( { - 2\sin \varphi } \right)\left[ {{\rm{cos}}\left( {\varphi  + {\pi  \over 2}} \right) + isin\left( {\varphi  + {\pi  \over 2}} \right)} \right]\)



Bài học liên quan

Từ khóa phổ biến