Câu 3.56 trang 94 sách bài tập Đại số và Giải tích 11 Nâng cao

Hãy tính các số sau:


Hãy tính các số sau:

LG a

Tổng tất cả số hạng của một cấp số nhân có số hạng đầu bằng \(\sqrt 2 ,\) số hạng thứ hai bằng \( - 2\) và số hạng cuối bằng \(64\sqrt 2 ;\)

Lời giải chi tiết:

Kí hiệu q là công bội và k là số số hạng của cấp số nhân đã cho.

Ta có \(q = {{ - 2} \over {\sqrt 2 }} =  - \sqrt 2 \).

Suy ra \(64\sqrt 2  = {u_k} = {u_1}.{q^{k - 1}} = \sqrt 2 .{( - \sqrt 2 )^{k - 1}} \Rightarrow k = 13.\)

Từ đó, kí hiệu tổng cần tính là S, ta được

\(S = {u_1} \times {{1 - {q^{13}}} \over {1 - q}} = \sqrt 2  \times {{1 - {{( - \sqrt 2 )}^{13}}} \over {1 - ( - \sqrt 2 )}} =  - 126 + 127\sqrt 2 .\)


LG b

Tổng tất cả các số hạng của một cấp số nhân có 11 số hạng, số hạng đầu bằng \({4 \over 3}\) và số hạng cuối bằng \({{81} \over {256}}.\)

Lời giải chi tiết:

Kí hiệu q là công bội của cấp số nhân đã cho. Ta có

\({{81} \over {256}} = {u_{11}} = {u_1}.{q^{10}} = {4 \over 3} \times {q^{10}}\)

\(\Rightarrow {q^{10}} = {{243} \over {1024}} \Rightarrow q = {{\sqrt 3 } \over 2}\)

Từ đó, kí hiệu tổng cần tính là S, ta được

\(S = {u_1} \times {{1 - {q^{11}}} \over {1 - q}} = {4 \over 3} \times {{1 - {{\left( {{{\sqrt 3 } \over 2}} \right)}^{11}}} \over {1 - \left( {{{\sqrt 3 } \over 2}} \right)}} = {{3367 + 1562.\sqrt 3 } \over {768}}.\)



Bài giải liên quan

Từ khóa phổ biến