Bài 1.9 trang 8 SBT Đại số và Giải tích 11 Nâng cao

Giải bài 1.9 trang 8 sách bài tập Đại số và Giải tích 11 Nâng cao. Từ tính chất hàm số ...


Từ tính chất hàm số \(y = \tan x\) là hàm số tuần hoàn với chu kì \(\pi \), hãy chứng minh rằng:

LG a

Hàm số \(y = A\tan \omega x + B\) (\(A,B,\omega \) là những hằng số, \(A\omega  \ne 0\)) là hàm số tuần hoàn với chu kì \({\pi  \over {\left| \omega  \right|}}\)  

Lời giải chi tiết:

Hàm số \(y = A\tan \omega x + B\) có tập xác định \(D = R\backslash \left\{ {{\pi  \over {2\omega }} + k{\pi  \over \omega }|k \in Z} \right\}\) .

Cần tìm T để \(\forall x \in D,x + T\) và \(x - T\) đều thuộc D và \(A\tan \omega \left( {x + T} \right) + B = A\tan \omega x + B\), tức là \(\tan (\omega x + \omega T) = \tan \omega x\).

Rõ ràng \(x \in D \Leftrightarrow \omega x = u \in {D_1}\) nên \(\tan (u + \omega T) = \tan u\) với mọi \(u \in D_1\) khi và chỉ khi \(\omega T = k\pi ,k \in Z\) .

Từ đó \(T = k{\pi  \over \omega }\) và số T dương nhỏ nhất cần tìm \({\pi  \over {\left| \omega  \right|}}\).


LG b

Hàm số \(y = \cot x\) là hàm số tuần hoàn với chu kì \(\pi \)

Lời giải chi tiết:

Với mọi \(x \in {D_2},\cot x =  - \tan \left( {x + {\pi  \over 2}} \right)\), nên \(\cot (x + T) = \cot x,\forall x \in {D_2}\) tương đương với \(\tan (u + T) = \tan u,\forall u = x + {\pi  \over 2} \in {D_1}\)

Từ đó \(T = k\pi ,k \in Z\).

Vậy số T dương nhỏ nhất cần tìm là \(\pi \).



Từ khóa phổ biến