Bài 7 trang 120 SGK Toán 11 tập 1 - Cánh Diều
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng:
Đề bài
Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD) và AB = 2CD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng:
a) MN // (SCD);
b) DM // (SBC);
c) Lấy điểm I thuộc cạnh SD sao cho\(\frac{{SI}}{{SD}} = \frac{2}{3}\).Chứng minh rằng: SB // (AIC).
Phương pháp giải - Xem chi tiết
Đường thẳng d song song với mặt phẳng (P) nếu d song song với 1 đường thẳng d' nằm trong (P).
Lời giải chi tiết
a) Trong mp(SAB), xét DSAB có M, N lần lượt là trung điểm của SA, SB nên MN là đường trung bình của tam giác
Do đó MN // AB.
Mà AB // CD (giả thiết) nên MN // CD.
Lại có CD ⊂ (SCD) nên MN // (SCD).
b) Theo câu a, MN là đường trung bình của ΔSAB nên MN = ½AB
Mà AB = 2CD hay CD = ½ AB
Do đó MN = CD.
Xét tứ giác MNCD có: MN // CD và MN = CD nên MNCD là hình bình hành
Suy ra DM // CN
Mà CN ⊂ (SBC) nên DM // (SBC)
c) Trong mp(ABCD), gọi O là giao điểm của AC và BD.
Do AB // CD, theo hệ quả định lí Thalès ta có: \(\frac{{OB}}{{DO}} = \frac{{AB}}{{CD}} = \frac{2}{1}\)
Suy ra\(\frac{{OB}}{{DO + OB}} = \frac{2}{{1 + 2}} = \frac{2}{3}\) hay \(OB\frac{{OB}}{{DO}} = \frac{2}{3}\)
• Trong mp(SDB), xét Δ∆SDB có \(\frac{{SI}}{{SD}} = \frac{{OB}}{{DB}} = \frac{2}{3}\) nên IO // SB (theo định lí Thalès đảo)
Mà IO ⊂ (AIC) nên SB // (AIC).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 7 trang 120 SGK Toán 11 tập 1 - Cánh Diều timdapan.com"