Bài 6 trang 80 SGK Hình học 10 Nâng cao

Xét vị trí tương đối của mỗi cặp đường thẳng sau và tìm giao điểm (nếu có) của chúng


Xét vị trí tương đối của mỗi cặp đường thẳng sau và tìm giao điểm (nếu có) của chúng

LG a

\(2x - 5y + 3 = 0\)  và \(5x + 2y - 3 = 0\) ;

Giải chi tiết:

Ta có: \({2 \over 5} \ne  - {5 \over 2}\) nên hai đường thẳng đã cho cắt nhau và tọa độ giao điểm là nghiệm của hệ phương trình:

\(\left\{ \matrix{
2x - 5y = - 3 \hfill \cr 
5x + 2y = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {9 \over {29}} \hfill \cr 
y = {{21} \over {29}} \hfill \cr} \right.\)

Vậy giao điểm của hai đường thẳng là \(A\left( {{9 \over {29}};{{21} \over {29}}} \right)\)


LG b

\(x - 3y + 4 - 0\)  và \(0,5x - 1,5y + 4 = 0\) ;

Giải chi tiết:

Ta có: \({1 \over {0,5}} =  - {3 \over { - 1,5}} \ne {4 \over 4}\) nên hai đường thẳng đã cho song song.


LG c

\(10x + 2y - 3 = 0\) và \(5x + y - 1,5 = 0.\)

Giải chi tiết:

Ta có: \({{10} \over 5} = {2 \over 1} = {{ - 3} \over { - 1,5}}\) nên hai đường thẳng đã cho trùng nhau.

Bài giải tiếp theo