Bài 2 trang 104 SGK Hình học 11
Giải bài 2 trang 104 SGK Hình học 11. Cho tứ diện ABCD có hai mặt ABC và BCD là hai tam giác cân có chung cạnh đáy BC
Đề bài
Cho tứ diện \(ABCD\) có hai mặt \(ABC\) và \(BCD\) là hai tam giác cân có chung cạnh đáy \(BC\).Gọi \(I\) là trung điểm của cạnh \(BC\).
a) Chứng minh rằng \(BC\) vuông góc với mặt phẳng \((ADI)\).
b) Gọi \(AH\) là đường cao của tam giác \(ADI\), chứng minh rằng \(AH\) vuông góc với mặt phẳng \((BCD)\).
Phương pháp giải - Xem chi tiết
Sử dụng kết quả của định lí:
Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.
Lời giải chi tiết
a) Tam giác \(ABC\) cân tại \(A\) nên ta có đường trung tuyến ứng với cạnh đáy đồng thời là đường cao do đó: \(AI\bot BC\)
Tương tự ta có: \(DI\bot BC\)
Ta có:
\(\left. \matrix{
AI \bot BC \hfill \cr
DI \bot BC \hfill \cr
AI \cap DI = {\rm{\{ }}I{\rm{\} }} \hfill \cr} \right\} \Rightarrow BC \bot (ADI)\)
b) Ta có \(AH\) là đường cao của tam giác \(ADI\) nên \(AH\bot DI\)
Mặt khác: \(BC\bot (ADI)\) mà \(AH\subset (ADI)\) nên \(AH\bot BC\)
Ta có
\(\left. \matrix{
AH \bot BC \hfill \cr
AH \bot DI \hfill \cr
BC \cap DI = {\rm{\{ }}I{\rm{\} }} \hfill \cr} \right\} \Rightarrow AH \bot (BCD)\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2 trang 104 SGK Hình học 11 timdapan.com"