Câu 4.6 trang 177 sách bài tập Giải tích 12 Nâng cao
Gọi M, M’ theo thứ tự là các điểm của mặt phẳng phức biểu diễn số
Đề bài
Gọi M, M’ theo thứ tự là các điểm của mặt phẳng phức biểu diễn số \(z \ne 0\) và \(z' = {{1 + i} \over 2}z\). Chứng minh rằng tam giác OMM’ là tam giác vuông cân (O là gốc tọa độ)
Lời giải chi tiết
Ta có \(\left| {\overline {OM} } \right| = \left| z \right|,\)
\(\eqalign{& \left| {\overline {OM'} } \right| = \left| {{{1 + i} \over 2}} \right|\left| z \right| = {{\sqrt 2 } \over 2}\left| z \right| \cr & \left| {\overline {MM'} } \right| = \left| {\overline {OM'} - \overline {OM} } \right| = \left| {{{ - 1 + i} \over 2}} \right|\left| z \right| = {{\sqrt 2 } \over 2}\left| z \right| \cr} \)
Do \(\left| z \right| \ne 0,\) suy ra tam giác OMM’ là tam giác vuông cân đỉnh M’ (h.4.5)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 4.6 trang 177 sách bài tập Giải tích 12 Nâng cao timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 4.6 trang 177 sách bài tập Giải tích 12 Nâng cao timdapan.com"