Bài 4 trang 121 SGK Hình học 11

Giải bài 4 trang 121 SGK Hình học 11. Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có góc BAD = 600.


Đề bài

Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\) và có góc \(\widehat{ BAD} = 60^0\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Đường thẳng SO vuông góc với mặt phẳng (ABCD) và \(SO = {{3a} \over 4}\) . Gọi \(E\) là trung điểm của đoạn \(BC\) và \(F\) là trung điểm của đoạn \(BE\).

a) Chứng minh mặt phẳng \( (SOF)\) vuông góc với mặt phẳng \((SBC)\)

b) Tính các khoảng cách từ \(O\) và \(A\) đến mặt phẳng \((SBC)\)

Phương pháp giải - Xem chi tiết

a) Chứng minh \(BC \bot \left( {SOF} \right)\).

b) Dựng và tính khoảng cách từ O đến mặt phẳng \((SBC)\). Chứng minh \(d\left( {A;\left( {SBC} \right)} \right) = 2d\left( {O;\left( {SBC} \right)} \right)\).

Lời giải chi tiết

a) Theo giả thiết \(\widehat{ BAD} = 60^0\) nên theo tính chất của hình thoi \(\widehat{ BCD} = 60^0\) hay tam giác \(BDC\) đều.

\(\Rightarrow BD = a \Rightarrow BO = \dfrac{1}{2}BD = \dfrac{a}{2}\); \(BE = \dfrac{1}{2}BC = \dfrac{a}{2}\)

Xét tam giác \(BOE\) có \(BO=BE=\dfrac{{a}}{2}\) và \(\widehat{ OBE} = 60^0\) nên tam giác \(BOE\) đều

Do đó \(OF\) là đường cao và ta được \(OF ⊥BC\). 

\(\left\{ \begin{array}{l}
SO \bot \left( {ABCD} \right) \Rightarrow BC \bot SO\\
BC \bot OF
\end{array} \right.\) \( \Rightarrow BC \bot \left( {SOF} \right)\)

Mà \(BC ⊂ (SBC)\Rightarrow (SOF) ⊥ (SBC)\)

b) Kẻ \(OH \bot SF\)

\(\begin{array}{l}
\left\{ \begin{array}{l}
\left( {SOF} \right) \bot \left( {SBC} \right)\\
\left( {SOF} \right) \cap \left( {SBC} \right) = SF\\
OH \bot SF\\
OH \subset \left( {SOF} \right)
\end{array} \right.\\
\Rightarrow OH \bot \left( {SBC} \right)\\
\Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH
\end{array}\)

Ta có:

Tam giác \(OBF\) vuông tại \(F\) nên \(OF = \sqrt {O{B^2} - B{F^2}}  \) \(= \sqrt {{{\left( {\dfrac{a}{2}} \right)}^2} - {{\left( {\dfrac{a}{4}} \right)}^2}}  = \dfrac{{a\sqrt 3 }}{4}\)

Tam giác \(SOF\) vuông tại \(O\) có \(\begin{array}{l}SO = \dfrac{{3a}}{4};\,\,OF = \dfrac{{a\sqrt 3 }}{4}\\ \Rightarrow SF = \sqrt {S{O^2} + O{F^2}} = \dfrac{{a\sqrt 3 }}{2}\\OH.SF = SO.OF \Rightarrow OH = \dfrac{{SO.OF}}{{SF}} = \dfrac{{3a}}{8}\end{array}\)

Gọi \(K\) là hình chiếu của \(A\) trên \((SBC)\), ta có \(AK//OH\)

Trong \(ΔAKC\) thì \(OH\) là đường trung bình, do đó: \(AK = 2OH \Rightarrow AK =\dfrac{{3a}}{4}\).

Vậy \(d\left( {A;\left( {SBC} \right)} \right) = \dfrac{{3a}}{4}\)

Bài giải tiếp theo
Bài 5 trang 121 SGK Hình học 11
Bài 6 trang 122 SGK Hình học 11
Bài 7 trang 122 SGK Hình học 11
Bài 1 trang 122 SGK Hình học 11
Bài 2 trang 122 SGK Hình học 11
Bài 3 trang 123 SGK Hình học 11
Bài 4 trang 123 SGK Hình học 11
Bài 5 trang 123 SGK Hình học 11
Bài 6 trang 123 SGK Hình học 11
Bài 7 trang 124 SGK Hình học 11

Video liên quan



Từ khóa