Câu 2.118 trang 89 sách bài tập Giải tích 12 Nâng cao

Giải các hệ phương trình sau


LG a

\(\left\{ \matrix{9{x^2} - 4{y^2} = 5 \hfill \cr{\log _5}\left( {3x + 2y} \right) - {\log _3}\left( {3x - 2y} \right) = 1 \hfill \cr}  \right.\)

Lời giải chi tiết:

ĐKXĐ: \(3x \pm 2y > 0\)

Lôgarit cơ số 5 hai vế của phương trình đầu ta được

\({\log _5}\left( {3x + 2y} \right) + {\log _5}\left( {3x - 2y} \right) = 1\)

Biến đổi phương trình thứ hai thành \({\log _5}\left( {3x + 2y} \right) - {{{{\log }_5}\left( {3x - 2y} \right)} \over {{{\log }_5}3}} = 1\)

Sau đó đặt \({\log _5}\left( {3x + 2y} \right) = u;{\log _5}\left( {3x - 2y} \right) = v\) dẫn đến hệ

                                \(\left\{ \matrix{u + v = 1 \hfill \cr u - {v \over {{{\log }_5}3}} = 1 \hfill \cr}  \right.\)

Ta tìm được: \(v=0, u=1\)

Vậy \(\left( {x;y} \right) = \left( {1;1} \right)\)


LG b

\(\left\{ \matrix{{5^{\ln x}} = {6^{\ln y}}  \hfill \cr{\left( {6x} \right)^{\ln 6}} = {\left( {5y} \right)^{\ln 5}} \hfill \cr}  \right.\)

Lời giải chi tiết:

Điều kiện \(x > 0,y > 0\)

Lôgarit cơ số e hai vế của  cả hai  phương trình của hệ dẫn đến

\(\left\{ \matrix{\ln x\ln 5 = \ln y\ln 6 \hfill \cr\ln 6\left( {\ln 6 + \ln x} \right) = \ln 5\left( {\ln 5 + \ln y} \right) \hfill \cr}  \right.\)

Giải hệ ta được: \(\left( {x;y} \right) = \left( {{1 \over 6};{1 \over 5}} \right)\)

Bài giải tiếp theo



Bài học liên quan

Từ khóa phổ biến