Câu 21 trang 214 SGK Giải tích 12 Nâng cao

Tìm các căn bậc hai của các số phức


Đề bài

Tìm các căn bậc hai của các số phức:

-8 + 6i;  3 + 4i;  \(1 - 2\sqrt 2 i\)

Phương pháp giải - Xem chi tiết

Gọi x+yi là căn bậc hai của a+bi, ta có:

(x+yi)2=a+bi <=>(x2-y2 )+2xyi=a+bi.

Giải hệ phương trình trên tìm x, y và kết luận.

Lời giải chi tiết

* Gọi x+yi là căn bậc hai của -8+6i, ta có:

(x+yi)2=-8+6i <=>(x2-y2 )+2xyi=-8+6i

\( \Leftrightarrow \left\{ \matrix{
{x^2} - {y^2} = - 8 \hfill \cr 
2xy = 6 \hfill \cr} \right. \)

\( \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{3}{x}\\
{x^2} - \frac{9}{{{x^2}}} = - 8
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{3}{x}\\
{x^4} + 8{x^2} - 9 = 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{3}{x}\\
\left[ \begin{array}{l}
{x^2} = 1\\
{x^2} = - 9\left( {loai} \right)
\end{array} \right.
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x = 1 \hfill \cr 
y = 3 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x = - 1 \hfill \cr 
y = - 3 \hfill \cr} \right. \hfill \cr} \right.\)

Hai căn bậc hai cần tìm là 1 + 3i và -1 – 3i

* Gọi x+yi là căn bậc hai của 3+4i, ta có:

(x+yi)2=3+4i <=>(x2-y2 )+2xyi=3+4i

\(\Leftrightarrow \left\{ \matrix{
{x^2} - {y^2} = 3 \hfill \cr 
2xy = 4 \hfill \cr} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
{x^2} - \frac{4}{{{x^2}}} = 3
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
{x^4} - 3{x^2} - 4 = 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = \frac{2}{x}\\
\left[ \begin{array}{l}
{x^2} = 4\\
{x^2} = - 1\left( {loai} \right)
\end{array} \right.
\end{array} \right.\) \(\Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x = 2 \hfill \cr 
y = 1 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x = - 2 \hfill \cr 
y = - 1 \hfill \cr} \right. \hfill \cr} \right.\)     

Hai căn bậc hai cần tìm là 2 + i; -2 – i

* Gọi x+yi là căn bậc hai của \(1 - 2\sqrt 2 i\), ta có:

(x+yi)2=\(1 - 2\sqrt 2 i\)

<=>(x2-y2 )+2xyi=\(1 - 2\sqrt 2 i\)

\(\Leftrightarrow \left\{ \matrix{
{x^2} - {y^2} = 1 \hfill \cr 
2xy = - 2\sqrt 2 \hfill \cr} \right. \)

\( \Leftrightarrow \left\{ \begin{array}{l}
y = - \frac{{\sqrt 2 }}{x}\\
{x^2} - \frac{2}{{{x^2}}} = 1
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = - \frac{{\sqrt 2 }}{x}\\
{x^4} - {x^2} - 2 = 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
y = - \frac{{\sqrt 2 }}{x}\\
\left[ \begin{array}{l}
{x^2} = 2\\
{x^2} = - 1\left( {loai} \right)
\end{array} \right.
\end{array} \right.\)

\(\Leftrightarrow \left[ \matrix{
\left\{ \matrix{
x = \sqrt 2 \hfill \cr 
y = - 1 \hfill \cr} \right. \hfill \cr 
\left\{ \matrix{
x = - \sqrt 2 \hfill \cr 
y = 1 \hfill \cr} \right. \hfill \cr} \right.\) 

Hai căn bậc hai cần tìm là:  \(\sqrt 2  - i;\,\, - \sqrt 2  + i\)



Bài học liên quan

Từ khóa phổ biến