Bài 6 trang 35 SGK Hình học 11
Giải bài 6 trang 35 SGK Hình học 11. Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(1;-3), bán kính 2. Viết phương trình ảnh của đường tròn (I;2)...
Đề bài
Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn tâm \(I(1;-3)\), bán kính \(2\). Viết phương trình ảnh của đường tròn \((I;2)\) qua phép đồng dạng có được từ việc thực hiện liên tiếp phép vị tự tâm \(O\) tỉ số \(3\) và phép đối xứng qua trục \(Ox\)
Phương pháp giải - Xem chi tiết
Phép vị tự tâm O tỉ số 3 biến đường tròn (I;R) thành (I';R') với \({V_{\left( {O;3} \right)}}\left( I \right) = I' \Rightarrow \overrightarrow {OI'} = 3\overrightarrow {OI} \), \(R'=3R\)
Phép đối xứng trục Ox biến (I';R') thành đường tròn (I'';R'') với \({D_{Ox}}\left( {I'} \right) = I'' \Leftrightarrow \left\{ \begin{array}{l}{x_{I''}} = {x_{I'}}\\{y_{I''}} = - {y_{I'}}\end{array} \right.\) và \(R''=R'\).
Lời giải chi tiết
Gọi \(I'\) là ảnh của \(I\) qua phép vị tự tâm \(O\) tỉ số \(3\) ta có:
\({V_{\left( {O;3} \right)}}\left( I \right) = I' \Rightarrow \overrightarrow {OI'} = 3\overrightarrow {OI} \) \(\Rightarrow \left\{ \begin{array}{l}
{x_{I'}} = 3{x_I} = 3\\
{y_{I'}} = 3{y_I} = - 9
\end{array} \right. \Rightarrow I'\left( {3; - 9} \right)\)
Vậy ảnh của đường tròn (I;2) qua phép vị tự tâm O tỉ số 3 biến thành đường tròn (I';6) với \(I'(3;-9)\).
Gọi \(I''\) là ảnh của \(I'\) qua phép đối xứng trục \(Ox\) ta có:
\({D_{Ox}}\left( {I'} \right) = I'' \Leftrightarrow \left\{ \begin{array}{l}
{x_{I''}} = {x_{I'}} = 3\\
{y_{I''}} = - {y_{I'}} = 9
\end{array} \right.\)
Vậy đường tròn (I';6) qua phép đối xứng trục Ox biến thành đường tròn (I'';6) với \(I''(3;9)\), có phương trình \({\left( {x - 3} \right)^2} + {\left( {y - 9} \right)^2} = 36\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 6 trang 35 SGK Hình học 11 timdapan.com"