Bài 3 trang 34 SGK Hình học 11

Giải bài 3 trang 34 SGK Hình học 11. Trong mặt phẳng tọa độ Oxy, cho đường tròn tâm I(3;-2), bán kính 3.


Trong mặt phẳng tọa độ \(Oxy\), cho đường tròn tâm \(I(3;-2)\), bán kính \(3\)

LG a

Viết phương trình của đường tròn đó

Phương pháp giải:

Đường tròn tâm \(I\left( {a;b} \right)\) bán kính R có phương trình \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\).

Lời giải chi tiết:

Đường tròn \(\left( {I;3} \right)\) có phương trình \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 9\).


LG b

Viết phương trình ảnh của đường tròn \((I;3)\) qua phép tịnh tiến theo vectơ \(v = (-2;1)\)

Phương pháp giải:

Ảnh của đường tròn \(\left( {I;3} \right)\) qua \({T_{\overrightarrow v }}\)  là đường tròn \(\left( {I';3} \right)\) với \(I' = {T_{\overrightarrow v }}\left( I \right) \Leftrightarrow \overrightarrow {II'}  = \overrightarrow v \).

Lời giải chi tiết:

Ta có: \(I' = {T_{\overrightarrow v }}\left( I \right) \Leftrightarrow \overrightarrow {II'}  = \overrightarrow v \).

\( \Rightarrow \left\{ \matrix{  {x_{I'}} = {x_I} - 2 = 1 \hfill \cr   {y_{I'}} = {y_I} + 1 =  - 1 \hfill \cr}  \right. \Rightarrow I'\left( {1; - 1} \right)\)

\( \Rightarrow \) Ảnh của đường tròn \(\left( {I;3} \right)\) qua \({T_{\overrightarrow v }}\) là đường tròn \(\left( {I';3} \right)\) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 9\).


LG c

Viết phương trình ảnh của đường tròn \((I;3)\) qua phép đối xứng qua trục \(Ox\)

Phương pháp giải:

Ảnh của đường tròn \(\left( {I;3} \right)\) qua \({D_{Ox}}\) là đường tròn \(\left( {I';3} \right)\) với \(I' = {D_{Ox}}\left( I \right)\).

Lời giải chi tiết:

Ta có: \(I' = {D_{Ox}}\left( I \right) \Rightarrow I'\left( {3;2} \right)\).

\( \Rightarrow \) Ảnh của đường tròn \(\left( {I;3} \right)\) qua \({D_{Ox}}\) là đường tròn \(\left( {I';3} \right)\) có phương trình \({\left( {x - 3} \right)^2} + {\left( {y - 2} \right)^2} = 9\).


LG d

Viết phương trình ảnh của đường tròn \((I;3)\) qua phép đối xứng qua gốc tọa độ.

Phương pháp giải:

Ảnh của đường tròn \(\left( {I;3} \right)\) qua \({D_O}\) là đường tròn \(\left( {I';3} \right)\) với \(I' = {D_O}\left( I \right)\).

Lời giải chi tiết:

Ta có: \(I' = {D_O}\left( I \right) \Rightarrow I'\left( { - 3;2} \right)\).

\( \Rightarrow \) Ảnh của đường tròn \(\left( {I;3} \right)\) qua \({D_{Ox}}\) là đường tròn \(\left( {I';3} \right)\) có phương trình \({\left( {x + 3} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

 



Từ khóa phổ biến