Bài 5 trang 80 SGK Hình học 12

Giải bài 5 trang 80 SGK Hình học 12. Viết phương trình mặt phẳng.


Cho tứ diện có các đỉnh là \(A(5 ; 1 ; 3), B(1 ; 6 ; 2), C(5 ; 0 ; 4), D(4 ; 0 ; 6).\)

LG a

a) Hãy viết các phương trình mặt phẳng \((ACD)\) và \((BCD)\)

Phương pháp giải:

Mặt phẳng \((P)\) đi qua \(3\) điểm \(A, \, \, B\) và \(C\) có VTPT:  \(\overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ,\;\overrightarrow {AC} } \right].\)

+) Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT  \(\overrightarrow n  = \left( {a;\;b;\;c} \right)\) có dạng:  \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)

Lời giải chi tiết:

Mặt phẳng \((ADC)\) đi qua \(A(5 ; 1 ; 3)\) và chứa giá của các vectơ \(\overrightarrow{AC}(0 ; -1 ; 1)\) và \(\overrightarrow{AD}(-1 ; -1 ; 3)\).

Ta có:: \(\left [\overrightarrow{AC},\overrightarrow{AD} \right ]\) \( = \left( {\left| {\begin{array}{*{20}{c}}{ - 1}&1\\{ - 1}&3\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}1&0\\3&{ - 1}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}0&{ - 1}\\{ - 1}&{ - 1}\end{array}} \right|} \right)\) \(= (-2 ; -1 ; -1).\)

Chọn \(\overrightarrow {{n_{\left( {ACD} \right)}}} =(2;1;1)\).

Phương trình \((ACD)\) có dạng: \(2(x - 5) + (y - 1) + (z - 3) = 0\) hay \(2x + y + z - 14 = 0\).

Tương tự ta có :\(\overrightarrow{BC}(4 ; -6 ; 2)\), \(\overrightarrow{BD}(3 ; -6 ; 4)\) và

\(\left (\begin{vmatrix} -6 & 2\\ -6 & 4 \end{vmatrix}; \begin{vmatrix} 2 &4 \\ 4& 3 \end{vmatrix};\begin{vmatrix} 4 & -6\\ 3& -6 \end{vmatrix} \right )\)

\(= (-12 ; -10 ; -6)=-2(6; 5; 3).\)

Chọn \(\overrightarrow{n_{(BCD)}}=(6;5;3)\) là VTPT của mặt phẳng \((BCD)\).

Phương trình mặt phẳng \((BCD)\) có dạng: \(6(x - 1) + 5(y - 6) +3(z - 2) = 0\) hay \(6x + 5y + 3z - 42 = 0\).


LG b

b) Hãy viết phương trình mặt phẳng \((α)\) đi qua cạnh \(AB\) và song song với cạnh \(CD\).

Lời giải chi tiết:

Mặt phẳng \(( α )\) qua cạnh \(AB\) và song song với \(CD\) thì \(( α )\) qua \(A\) và nhận \(\overrightarrow{AB} (-4 ; 5 ; -1)\) , \(\overrightarrow{CD}(-1 ; 0 ; 2)\) làm vectơ chỉ phương.

VTPT của  mặt phẳng \((α): \overrightarrow{n}=\left [\overrightarrow{AB},\overrightarrow{CD} \right ] \) \(= \left( {\left| {\begin{array}{*{20}{c}}5&{ - 1}\\0&2\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 1}&{ - 4}\\2&{ - 1}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}{ - 4}&5\\{ - 1}&0\end{array}} \right|} \right)\) \(= (10 ; 9 ; 5).\)

Phương trình mặt phẳng \(( α )\) có dạng : \(10\left( {x - 5} \right) + 9\left( {y - 1} \right) + 5\left( {z - 3} \right) = 0\) hay \(10x + 9y + 5z - 74 = 0\).



Từ khóa phổ biến