Bài 36 trang 61 SGK Toán 9 tập 1

Giải bài 36 trang 61 SGK Toán 9 tập 1. Cho hai hàm số bậc nhất y = ( k + 1)x = 3 và y = (3 – 2k)x + 1.


Đề bài

Cho hai hàm số bậc nhất \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\).

a) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng song song với nhau?

b) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng cắt nhau?

c) Hai đường thẳng nói trên có thể trùng nhau được không? Vì sao? 

Phương pháp giải - Xem chi tiết

Với hai đường thẳng \(y = ax + b\) (d) và \(y = a'x + b'\) (d'), trong đó \(a\) và \(a' \) khác 0, ta có:

+) TH1: (d) và (d') cắt nhau khi và chỉ khi \(a \ne a'\)

+) TH2: (d) và (d') song song với nhau khi và chỉ khi \(a = a'\) và \(b \ne b'\)

+) TH3: (d) và (d') trùng nhau khi và chỉ khi \(a = a'\) và \(b = b'.\)

Lời giải chi tiết

Hàm số \(y = \left( {k + 1} \right)x + 3\) có các hệ số \(a = k + 1,\,\,b = 3\) 

Hàm số \(y = \left( {3 - 2k} \right)x + 1\) có các hệ số \(a' = 3 - 2k,\,\,\,b' = 1\)

a) Hai đường thẳng \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\) song song với nhau khi:

\(\left\{ \matrix{
k + 1 \ne 0 \hfill \cr 
3 - 2k \ne 0 \hfill \cr 
k + 1 = 3 - 2k \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
k \ne - 1 \hfill \cr 
k \ne {\displaystyle 3 \over \displaystyle 2} \hfill \cr 
k = {\displaystyle 2 \over \displaystyle 3} \hfill \cr} \right.\)

\( \displaystyle \Rightarrow k = {2 \over 3}\) (thỏa mãn điều kiện )

b) Hai đường thẳng \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\) cắt nhau khi:

\(\left\{ \matrix{
k + 1 \ne 0 \hfill \cr 
3 - 2k \ne 0 \hfill \cr 
k + 1 \ne 3 - 2k \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
k \ne - 1 \hfill \cr 
k \ne {\displaystyle 3 \over \displaystyle 2} \hfill \cr 
k \ne {\displaystyle 2 \over \displaystyle 3} \hfill \cr} \right.\) 

c) Hai đường thẳng trên không trùng nhau vì chúng có tung độ gốc khác nhau \((3 ≠ 1) .\)



Từ khóa phổ biến