Bài 1.6 trang 15 SGK Toán 11 tập 1 - Cùng khám phá
Không dùng máy tính cầm tay, tính:
Đề bài
Không dùng máy tính cầm tay, tính:
a) \({\sin ^2}\frac{\pi }{4} + \cos \left( { - \frac{\pi }{2}} \right);\)
b) \({\tan ^2}\left( {{{30}^0}} \right) - {\cot ^2}\left( {{{240}^0}} \right);\)
c) \({\sin ^3}\frac{\pi }{2} - \cos 5\pi ;\)
d) \(\tan \frac{{11\pi }}{3} - \cot \left( { - \frac{{21\pi }}{4}} \right)\).
Phương pháp giải - Xem chi tiết
Đưa các giá trị lượng giác của góc lượng giác lớn về các giá trị lượng giác của góc lượng giác nhỏ và đặc biệt:
\(\begin{array}{l}\sin \left( {\alpha + k2\pi } \right) = \sin \alpha \\{\rm{cos}}\left( {\alpha + k2\pi } \right) = \cos \alpha \\\tan \left( {\alpha + k\pi } \right) = \tan \alpha \\\cot \left( {\alpha + k\pi } \right) = \cot \alpha \end{array}\)
Áp dụng các hệ thức giữa giá trị lượng giác của các góc lượng giác có liên quan đặc biệt và bảng các giá trị lượng giác đặc biệt.
Lời giải chi tiết
a)
\(\begin{array}{l}{\sin ^2}\frac{\pi }{4} + \cos \left( { - \frac{\pi }{2}} \right)\\ = {\sin ^2}\frac{\pi }{4} + \cos \frac{\pi }{2}\\ = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + 0 = \frac{1}{2}\end{array}\)
b)
\(\begin{array}{l}{\tan ^2}\left( {{{30}^0}} \right) - {\cot ^2}\left( {{{240}^0}} \right)\\ = {\left( {\frac{1}{{\sqrt 3 }}} \right)^2} - \cot \left( {{{60}^0}} \right)\\ = \frac{1}{3} - \frac{{\sqrt 3 }}{3} = \frac{{1 - \sqrt 3 }}{3}\end{array}\)
c)
\(\begin{array}{l}{\sin ^3}\frac{\pi }{2} - \cos 5\pi \\ = {1^3} - \cos \left( {\pi + 4\pi } \right)\\ = 1 - \cos \pi \\ = 1 - \left( { - 1} \right) = 2\end{array}\)
d)
\(\begin{array}{l}\tan \frac{{11\pi }}{3} - \cot \left( { - \frac{{21\pi }}{4}} \right)\\ = \tan \left( {\frac{2}{3}\pi + 3\pi } \right) - \cot \left( { - \frac{\pi }{4} - 5\pi } \right)\\ = \tan \left( {\frac{{2\pi }}{3}} \right) - \cot \left( { - \frac{\pi }{4}} \right)\\ = - \sqrt 3 + \cot \left( {\frac{\pi }{4}} \right)\\ = - \sqrt 3 + 1\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.6 trang 15 SGK Toán 11 tập 1 - Cùng khám phá timdapan.com"