Bài 1 trang 53 SGK Hình học 11

Giải bài 1 trang 53 SGK Hình học 11. Cho điểm A không nằm trong mặt phẳng (α) chứa tam giác BCD. Lấy E,F là các điểm lần lượt nằm trên các cạnh AB, AC


Đề bài

Cho điểm \(A\) không nằm trong mặt phẳng \((α)\) chứa tam giác \(BCD\). Lấy \(E,F\) là các điểm lần lượt nằm trên các cạnh \(AB, AC\).

a) Chứng minh đường thẳng \(EF\) nằm trong mặt phẳng \((ABC)\).

b) Khi \(EF\) và \(BC\) cắt nhau tại \(I\), chứng minh \(I\) là điểm chung của hai mặt phẳng \((BCD)\) và \((DEF)\).

Phương pháp giải - Xem chi tiết

a) Chỉ ra \(E \in \left( {ABC} \right);\,\,F \in \left( {ABC} \right)\).

b) Chứng minh \(I \in \left( {DEF} \right);\,\,I \in \left( {BCD} \right)\).

Lời giải chi tiết

a) Ta có: 

\(\left\{ \begin{array}{l}
E \in AB,\,\,AB \subset \left( {ABC} \right) \Rightarrow E \in \left( {ABC} \right)\\
F \in AC,\,\,AC \subset \left( {ABC} \right) \Rightarrow F \in \left( {ABC} \right)
\end{array} \right. \\ \Rightarrow EF \subset \left( {ABC} \right)\)

b) Ta có:

\(\left\{ \begin{array}{l}I \in EF,\,\,EF \subset \left( {DEF} \right) \Rightarrow I \in \left( {DEF} \right)\\I \in BC,\,\,BC \subset \left( {BCD} \right) \Rightarrow I \in \left( {BCD} \right)\end{array} \right. \)\(\,\Rightarrow I\) là điểm chung của hai mặt phẳng \((BCD)\) và \((DEF)\).



Từ khóa phổ biến