Bài 1 trang 29 SGK Hình học 11

Giải bài 1 trang 29 SGK Hình học 11. Cho tam giác ABC có ba góc nhọn và H là trực tâm. Tìm ảnh của tam giác ABC qua phép vị tự tâm H


Đề bài

Cho tam giác \(ABC\) có ba góc nhọn và \(H\) là trực tâm. Tìm ảnh của tam giác \(ABC\) qua phép vị tự tâm \(H\), tỉ số \( \frac{1}{2}\)

Phương pháp giải - Xem chi tiết

Sử dụng khái niệm phép vị tự: Phép vị tự tâm I tỉ số k biến M thành điểm M' \( \Rightarrow \overrightarrow {IM'}  = k\overrightarrow {IM} \).

Lời giải chi tiết

Gọi \(A',B',C'\) lần lượt là ảnh của \(A,B,C\) qua \({V_{\left( {H,\dfrac{1}{2}} \right)}}\) ta có:

+) \(A' = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( A \right) \Rightarrow \overrightarrow {HA'}  = \dfrac{1}{2}\overrightarrow {HA} \)\( \Rightarrow A'\) là trung điểm của \(AH\).

+) \(B' = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( B \right) \Rightarrow \overrightarrow {HB'}  = \dfrac{1}{2}\overrightarrow {HB} \)\( \Rightarrow B'\) là trung điểm của \(BH\).

+) \(C' = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( C \right) \Rightarrow \overrightarrow {HC'}  = \dfrac{1}{2}\overrightarrow {HC} \)\( \Rightarrow C'\) là trung điểm của \(CH\).

Vậy ảnh của \(A, B, C\) lần lượt là trung điểm \(A', B', C'\) của các cạnh \(HA, HB, HC\)

 



Từ khóa phổ biến