Bài 1 trang 140 SGK Đại số và Giải tích 11
Giải bài 1 trang 140 SGK Đại số và Giải tích 11. Dùng định nghĩa xét tính liên tục của hàm số
Đề bài
Dùng định nghĩa xét tính liên tục của hàm số \(f(x) = x^3+ 2x - 1\) tại \(x_0= 3\).
Phương pháp giải - Xem chi tiết
Hàm số \(y=f(x)\) có tập xác định \(D\) liên tục tại \({x_0 \in D}\)
\( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
Lời giải chi tiết
Hàm số \(f(x) = x^3+ 2x - 1\) xác định trên \(\mathbb R\) và \(x_0= 3 ∈ \mathbb R\).
Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 3} f\left( x \right) = {3^3} + 2.3 - 1 = 32\\f\left( 3 \right) = {3^3} + 2.3 - 1 = 32\end{array} \right. \) \(\Rightarrow \mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right)\).
Vậy hàm số đã cho liên tục tại điểm \(x_0= 3\).
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1 trang 140 SGK Đại số và Giải tích 11 timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1 trang 140 SGK Đại số và Giải tích 11 timdapan.com"