Lý thuyết phép đối xứng trục
Cho đường thẳng d. Phép biến hình biến mỗi điểm M thuộc d thành chính nó, biến mỗi điểm M không thuộc d thành M' sao cho d là đường trung trực của đoạn thẳng MM'...
1. Cho đường thẳng \(d\). Phép biến hình biến mỗi điểm \(M\) thuộc \(d\) thành chính nó, biến mỗi điểm \(M\) không thuộc \(d\) thành \(M'\) sao cho \(d\) là đường trung trực của đoạn thẳng \(MM'\), được gọi là phép đối xứng qua đường thẳng \(d\) hay phép đối xứng trục \(d\).
Phép đối xứng trục \(d\) thường được kí hiệu là \(Đ_d\)
Nếu hình \(H'\) là ảnh của hình \(H\) qua \(Đ_d\) thì ta còn nói \(H\) đối xứng với \(H'\) qua \(d\), hay \(H\) và \(H'\) đối xứng với nhau qua \(d\).
2. Cho đường thẳng \(d\). Với mỗi điểm \(M\), gọi \(M''\) là hình chiếu vuông góc của \(M\) trên đường thẳng \(d\). Khi đó
\(M' = Đ_dM)\) khi và chỉ khi \(\overrightarrow{M''M'}\) = \(\overrightarrow{-M''M}\)
3. \(M' = Đ_d(M)\) khi và chỉ khi \(M = Đ_d(M')\)
4.- Biểu thức tọa độ của phép đối xứng qua trục \(Ox\):
\(\left\{\begin{matrix} {x}'= x\\ {y}'= -y. \end{matrix}\right.\)
- Biểu thức tọa độ của phép đối xứng qua trục \(Oy\)
\(\left\{\begin{matrix} {x}'= -x\\ {y}'= y \end{matrix}\right.\)
5. Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kì.
6. Phép đối xứng trục biến đường thẳng thành đường thẳng, biến đoạn thẳng thành đoạn thẳng bằng nó, biến tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn cùng bán kính.
7. Đường thẳng \(d\) được gọi là trục đối xứng của hình \(H\) nếu phép đối xứng qua \(d\) biến \(H\) thành chính nó. Tức \(Đ_d (H') = H\)
Khi đó ta nói \(H\) là hình có trục đối xứng
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết phép đối xứng trục timdapan.com"