Giải mục 2 trang 43, 44 SGK Toán 11 tập 2 - Cánh Diều

Tìm giá trị y tương ứng với giá trị của x trong bảng sau:


Hoạt động 4

Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

Phương pháp giải:

Dựa vào hàm lôgarit đã học rồi thay số

Lời giải chi tiết:


Luyện tập – Vận dụng 3

Cho hai ví dụ về hàm số lôgarit

Phương pháp giải:

Dựa vào định nghĩa hàm số lôgarit để xác định

Lời giải chi tiết:

\({\log _3}x;\,\,{\log _5}\left( {x + 2} \right)\)


Hoạt động 2

Cho hàm số lôgarit \(y = {\log _2}x\)

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

b,     Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.

Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;{{\log }_2}x} \right)\) với \(x \in (0; + \infty )\) và nối lại ta được đồ thị hàm số \(y = {\log _2}x\) như hình bên.

c,     Cho biết tọa độ giao điểm của đồ thị hàm số \(y = {\log _2}x\) với trục hoành và vị trí của đồ thị hàm số đó với trục tung.

d,   Quan sát đồ thị hàm số \(y = {\log _2}x\), nêu nhận xét về:

  • \(\mathop {\mathop {\lim }\limits_{x \to {0^ + }} ({{\log }_2}x)}\limits_{} \,;\mathop {\,\,\mathop {\lim }\limits_{x \to  + \infty } ({{\log }_2}x)}\limits_{} \)
  • Sự biến thiên của hàm số \(y = {\log _2}x\) và lập bảng biến thiên của hàm số đó

Phương pháp giải:

Áp dụng kiến thức đã học về giới hạn và lôgarit để trả lời câu hỏi

Lời giải chi tiết:

a)     \(y = {\log _2}x\)

b,   Biểu diễn các điểm ở câu a:

c,   Tọa độ giao điểm của đồ thị hàm số  với trục hoành \(y = {\log _2}x\)là (1;0)

Đồ thị hàm số đó không cắt trục tung.

d,     \(\mathop {\mathop {\lim }\limits_{x \to {0^ + }} ({{\log }_2}x)}\limits_{}  = 0;\mathop {\,\,\mathop {\lim }\limits_{x \to  + \infty } ({{\log }_2}x)}\limits_{}  =  + \infty \)

Hàm số \(y = {\log _2}x\) đồng biến trên toàn \((0; + \infty )\)

Bảng biến thiên của hàm số:

 


Hoạt động 6

Cho hàm số lôgarit \(y = {\log _{\frac{1}{2}}}x\)

a)     Tìm giá trị y tương ứng với giá trị của x trong bảng sau:

b,    Trong mặt phẳng tọa độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a.

Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;{{\log }_{\frac{1}{2}}}x} \right)\) với \(x \in (0; + \infty )\) và nối lại ta được đồ thị hàm số \(y = {\log _{\frac{1}{2}}}x\) như hình bên.

c,   Cho biết tọa độ giao điểm của đồ thị hàm số \(y = {\log _{\frac{1}{2}}}x\) với trục hoành và vị trí của đồ thị hàm số đó với trục tung.

d,     Quan sát đồ thị hàm số \(y = {\log _{\frac{1}{2}}}x\), nêu nhận xét về:

  • \(\mathop {\lim }\limits_{x \to {0^ + }} ({\log _{\frac{1}{2}}}x)\,;\mathop {\,\,\mathop {\lim }\limits_{x \to  + \infty } ({{\log }_{\frac{1}{2}}}x)}\limits_{} \)
  • Sự biến thiên của hàm số \(y = {\log _{\frac{1}{2}}}x\) và lập bảng biến thiên của hàm số đó.

Phương pháp giải:

Áp dụng kiến thức đã học về giới hạn và lũy thừa để trả lời câu hỏi

Lời giải chi tiết:

a)     \(y = {\log _{\frac{1}{2}}}x\)

b,    Biểu diễn các điểm ở câu a:

c,    Tọa độ giao điểm của đồ thị hàm số  với trục hoành \(y = {\log _{\frac{1}{2}}}x\)là (1;0)

Đồ thị hàm số đó không cắt trục tung

c)     \(\mathop {\lim }\limits_{x \to {0^ + }} {\log _{\frac{1}{2}}}x = 0;\,\,\mathop {\lim }\limits_{x \to  + \infty } {\log _{\frac{1}{2}}}x =  - \infty \)

Hàm số \(y = {\log _{\frac{1}{2}}}x\) nghịch biến trên toàn \((0; + \infty )\)

Bảng biến thiên của hàm số:

 


Luyện tập – Vận dụng 4

Lập bảng biến thiên và vẽ đồ thị hàm số \(y = {\log _{\frac{1}{3}}}x\)

Phương pháp giải:

Dựa vào bảng biến thiên và đồ thị hàm số \(y = {\log _{\frac{1}{2}}}x\) để làm

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to {0^ + }} {\log _{\frac{1}{3}}}x = 0;\,\,\mathop {\lim }\limits_{x \to  + \infty } {\log _{\frac{1}{3}}}x =  - \infty \)

Hàm số \(y = {\log _{\frac{1}{3}}}x\) nghịch biến trên toàn \((0; + \infty )\)

Bảng biến thiên của hàm số:

 



Từ khóa phổ biến