Giải bài tập 1 trang 88 SGK Toán 9 tập 1 - Chân trời sáng tạo
Trong Hình 14, MB, MC lần lượt là tiếp tuyến của đường tròn (O) tại B, C; \(\widehat {COB} = {130^o}\). Tính số đo \(\widehat {CMB}\) .
Đề bài
Trong Hình 14, MB, MC lần lượt là tiếp tuyến của đường tròn (O) tại B, C; \(\widehat {COB} = {130^o}\). Tính số đo \(\widehat {CMB}\) .
Phương pháp giải - Xem chi tiết
Tính \(\widehat {CMB}\) bằng cách dựa vào tính chất trong một tứ giác tổng các góc bằng 360o.
Lời giải chi tiết
Xét tứ giác MBOC ta có:
\(\begin{array}{l}\widehat {CMB} = {360^o} - (\widehat {MCO} + \widehat {MBO} + \widehat {COB})\\ = {360^o} - (2\widehat {MCO} + \widehat {COB})\\ = {360^o} - ({2.90^o} + {130^o})\\ = {50^o}\end{array}\)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 1 trang 88 SGK Toán 9 tập 1 - Chân trời sáng tạo timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 1 trang 88 SGK Toán 9 tập 1 - Chân trời sáng tạo timdapan.com"