Bài 98 trang 151 SBT toán 7 tập 1
Giải bài 98 trang 151 sách bài tập toán 7 tập 1. Tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Chứng minh rằng tam giác ABC là tam giác cân.
Đề bài
Tam giác \(ABC\) có \(M\) là trung điểm của \(BC\) và \(AM\) là tia phân giác của góc \(A.\) Chứng minh rằng tam giác \(ABC\) là tam giác cân.
Phương pháp giải - Xem chi tiết
- Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
- Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Lời giải chi tiết
Kẻ \(MH \bot AB,MK \bot AC\) \((H\in AB, K\in AC)\).
Xét hai tam giác vuông \(AHM\) và \(AKM\) có:
\(\widehat {AHM} = \widehat {AKM} = 90^\circ \)
\(\widehat {HAM} = \widehat {KAM}\) (vì \(AM\) là tia phân giác góc \(A\))
\(AM\) cạnh chung
\( \Rightarrow ∆AHM = ∆AKM\) (cạnh huyền - góc nhọn).
\( \Rightarrow MH = MK\) (hai cạnh tương ứng).
Xét hai tam giác vuông \(MHB\) và \(MKC\) có:
\(\widehat {MHB} = \widehat {MKC} = 90^\circ \)
\(MH = MK\) (chứng minh trên)
\(MB = MC\) (vì \(M\) là trung điểm của \(BC\))
\( \Rightarrow ∆MHB = ∆MKC\) (cạnh huyền - cạnh góc vuông).
\( \Rightarrow \widehat B = \widehat C\) (hai góc tương ứng).
Vậy \(∆ABC\) cân tại \(A.\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 98 trang 151 SBT toán 7 tập 1 timdapan.com"