Bài 4.8 trang 157 SBT đại số và giải tích 11
Giải bài 4.8 trang 157 sách bài tập đại số và giải tích 11. Cho dãy số (un) xác định bởi công thức truy hồi...
Đề bài
Cho dãy số \(\displaystyle \left( {{u_n}} \right)\) xác định bởi công thức truy hồi
\(\displaystyle \left\{ \matrix{
{u_1} = 2 \hfill \cr
{u_{n + 1}} = {{{u_n} + 1} \over 2}{\rm{ voi }}n \ge 1 \hfill \cr} \right.\)
Chứng minh rằng \(\displaystyle \left( {{u_n}} \right)\) có giới hạn hữu hạn khi \(\displaystyle n\to +\infty \). Tìm giới hạn đó.
Phương pháp giải - Xem chi tiết
Tìm công thức tổng quát và tính giới hạn
Lời giải chi tiết
\(\displaystyle \left\{ \matrix{
{u_1} = 2 \hfill \cr
{u_{n + 1}} = {{{u_n} + 1} \over 2}{\rm\,\,{ vớii }}\,\,n \ge 1 \hfill \cr} \right.\)
Ta có:
\(\begin{array}{l}{u_1} = 2\\{u_2} = \dfrac{3}{2} = \dfrac{{2 + 1}}{2}\\{u_3} = \dfrac{5}{4} = \dfrac{{{2^2} + 1}}{{{2^2}}}\\{u_4} = \dfrac{9}{8} = \dfrac{{{2^3} + 1}}{{{2^3}}}\\{u_5} = \dfrac{{17}}{{16}} = \dfrac{{{2^4} + 1}}{{{2^4}}}\end{array}\)
Dự đoán \({u_n} = \dfrac{{{2^{n - 1}} + 1}}{{{2^{n - 1}}}}\,\left( * \right)\) với \(\forall n \in {\mathbb{N}^*}\)
Thật vậy,
+) Với \(n = 1\) ta có \({u_1} = \dfrac{{{2^{1 - 1}} + 1}}{{{2^{1 - 1}}}} = 2\) nên đúng.
+) Giả sử \(\left( * \right)\) đúng với \(n = k\), nghĩa là \({u_k} = \dfrac{{{2^{k - 1}} + 1}}{{{2^{k - 1}}}}\), ta cần chứng minh \({u_{k + 1}} = \dfrac{{{2^k} + 1}}{{{2^k}}}\)
Ta có:
\({u_{k + 1}} = \dfrac{{{u_k} + 1}}{2}\)\( = \dfrac{1}{2}\left( {{u_k} + 1} \right) = \dfrac{1}{2}\left( {\dfrac{{{2^{k - 1}} + 1}}{{{2^{k - 1}}}} + 1} \right)\) \( = \dfrac{1}{2}.\dfrac{{{2^{k - 1}} + 1 + {2^{k - 1}}}}{{{2^{k - 1}}}}\) \( = \dfrac{{{{2.2}^{k - 1}} + 1}}{{{{2.2}^{k - 1}}}} = \dfrac{{{2^k} + 1}}{{{2^k}}}\)
\( \Rightarrow dpcm\).
Từ đó,
\(\displaystyle \eqalign{
& \lim {u_n} = \lim {{{2^{n - 1}} + 1} \over {{2^{n - 1}}}} \cr
& = \lim \left[ {1 + {{\left( {{1 \over 2}} \right)}^{n - 1}}} \right] \cr
& = \lim \left[ {1 + 2.{{\left( {{1 \over 2}} \right)}^n}} \right] = 1 \cr}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 4.8 trang 157 SBT đại số và giải tích 11 timdapan.com"