Bài 4.45 trang 208 SBT giải tích 12
Giải bài 4.45 trang 208 sách bài tập giải tích 12.Số nào sau đây là số thực?...
Đề bài
Số nào sau đây là số thực?
A. \(\dfrac{{2 + i\sqrt 2 }}{{1 - i\sqrt 2 }} + \dfrac{{1 + i\sqrt 2 }}{{2 - i\sqrt 2 }}\)
B. \(\left( {2 + 3i} \right)\left( {3 - i} \right) + \left( {2 - 3i} \right)\left( {3 + i} \right)\)
C. \(\dfrac{{\left( {1 + i} \right)\left( {2 + i} \right)}}{{2 - i}} + \dfrac{{\left( {1 + i} \right)\left( {2 - i} \right)}}{{2 + i}}\)
D. \({\left( {2 + i\sqrt 3 } \right)^2} - {\left( {2 - i\sqrt 3 } \right)^2}\)
Phương pháp giải - Xem chi tiết
Thực hiện các phép toán ở mỗi đáp án và kiểm tra kết quả là số thực.
Lời giải chi tiết
Đáp án A: \(\dfrac{{2 + i\sqrt 2 }}{{1 - i\sqrt 2 }} + \dfrac{{1 + i\sqrt 2 }}{{2 - i\sqrt 2 }}\)\( = \dfrac{{\left( {2 + i\sqrt 2 } \right)\left( {2 - i\sqrt 2 } \right) + \left( {1 + i\sqrt 2 } \right)\left( {1 - i\sqrt 2 } \right)}}{{\left( {1 - i\sqrt 2 } \right)\left( {2 - i\sqrt 2 } \right)}}\) \( = \dfrac{{4 + 2 + 1 + 2}}{{2 - 3i\sqrt 2 - 2}}\) \( = \dfrac{9}{{ - 3i\sqrt 2 }} = \dfrac{{9i}}{{ - 3{i^2}\sqrt 2 }} = \dfrac{{3\sqrt 2 i}}{2}\)
A sai.
Đáp án B: \(\left( {2 + 3i} \right)\left( {3 - i} \right) + \left( {2 - 3i} \right)\left( {3 + i} \right)\)\( = 6 + 9i - 2i + 3 + 6 - 9i + 2i + 3\) \( = 18 \in \mathbb{R}\).
Chọn B.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 4.45 trang 208 SBT giải tích 12 timdapan.com"