Bài 3.15 trang 66 SBT đại số 10

Giải bài 3.15 trang 66 sách bài tập đại số 10. Cho phương trình...


Cho phương trình \(9{x^2} + 2({m^2} - 1)x + 1 = 0\).

LG a

 Chứng tỏ rằng với m > 2 phương trình có hai nghiệm phân biệt âm.

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\) có 2 nghiệm âm \({x_1}\) và \({x_2}\) phân biệt âm khi:

\({x_1} < {x_2} < 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta  > 0}\\{{x_1} + {x_2} < 0}\\{{x_1}{x_2} > 0}\end{array}} \right.\);  \({x_1} + {x_2} =  - \dfrac{b}{a}\)

Lời giải chi tiết:

Ta có:

\(\Delta ' = {({m^2} - 1)^2} - 9\)\( = ({m^2} + 2)({m^2} - 4)\) \( = ({m^2} + 2)(m + 2)(m - 2)\)

Với \(m > 2\) thì \(\Delta ' > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},{x_2}\).

Vì \({x_1}.{x_2} = \dfrac{1}{9} > 0\) nên hai nghiệm cùng dấu. Hơn nữa

\({x_1} + {x_2} =  - \dfrac{{2({m^2} - 1)}}{9} < 0\) với mọi m > 2 nên hai nghiệm đều âm.


LG b

Xác định m để phương trình có hai nghiệm \({x_1},{x_2}\) mà \({x_1} + {x_2} =  - 4\).

Phương pháp giải:

Phương trình \(a{x^2} + bx + c = 0\) có 2 nghiệm âm \({x_1}\) và \({x_2}\) phân biệt âm khi:

\({x_1} < {x_2} < 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta  > 0}\\{{x_1} + {x_2} < 0}\\{{x_1}{x_2} > 0}\end{array}} \right.\);  \({x_1} + {x_2} =  - \dfrac{b}{a}\)

Lời giải chi tiết:

Ta có: \(\dfrac{{ - 2({m^2} - 1)}}{9} =  - 4\)\( \Leftrightarrow {m^2} = 19\)\( \Leftrightarrow m =  \pm \sqrt {19} \)

Với \(m =  \pm \sqrt {19} \) thì \(\Delta ' > 0\).

Đáp số: \(m =  \pm \sqrt {19} \).



Từ khóa phổ biến