Bài 2.86 trang 135 SBT giải tích 12
Giải bài 2.86 trang 135 sách bài tập giải tích 12. Số nghiệm của phương trình...
Đề bài
Số nghiệm của phương trình \(\displaystyle \lg \left( {{x^2} - 6x + 7} \right) = \lg \left( {x - 3} \right)\) là:
A. \(\displaystyle 2\) B. \(\displaystyle 1\)
C. \(\displaystyle 0\) D. Vô số
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(\displaystyle {\log _a}f\left( x \right) = {\log _a}g\left( x \right)\) \(\displaystyle \Leftrightarrow f\left( x \right) = g\left( x \right)\)
Lời giải chi tiết
ĐK: \(\displaystyle \left\{ \begin{array}{l}{x^2} - 6x + 7 > 0\\x - 3 > 0\end{array} \right.\)
Ta có: \(\displaystyle \lg \left( {{x^2} - 6x + 7} \right) = \lg \left( {x - 3} \right)\)\(\displaystyle \Leftrightarrow {x^2} - 6x + 7 = x - 3\) \(\displaystyle \Leftrightarrow {x^2} - 7x + 10 = 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x = 5\left( {TM} \right)\\x = 2\left( {KTM} \right)\end{array} \right.\)
Vậy phương trình có nghiệm duy nhất \(\displaystyle x = 5\).
Chọn B.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2.86 trang 135 SBT giải tích 12 timdapan.com"