Bài 2.25 trang 92 SBT hình học 10
Giải bài 2.25 trang 92 sách bài tập hình học 10. Trong mặt phẳng Oxy cho bốn điểm ...
Đề bài
Trong mặt phẳng Oxy cho bốn điểm \(A( - 1;1),B(0;2),C(3;1)\) và \(D(0; - 2)\). Chứng minh rằng tứ giác ABCD là hình thang cân.
Phương pháp giải - Xem chi tiết
Ta chứng minh \(DC = k\overrightarrow {AB} \left( {k \ne 1} \right)\) và \(\left| {\overrightarrow {AD} } \right| = \left| {\overrightarrow {BC} } \right|\)
Lời giải chi tiết
Ta có: \(\overrightarrow {AB} = (1;1),\overrightarrow {DC} = (3;3)\).
Vậy \(\overrightarrow {DC} = 3\overrightarrow {AB} \), ta suy ra DC // AB và DC = 3AB.
Mặt khác \(\left| {\overrightarrow {AD} } \right| = \sqrt {{1^2} + {3^2}} \) và \(\left| {\overrightarrow {BC} } \right| = \sqrt {{3^2} + {1^2}} \)
Nên ABCD là hình thang cân có hai cạnh bên AD và BC bằng nhau, còn hai đáy là AB và CD trong đó đáy lớn CD dài gấp 3 lần đáy nhỏ AB.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2.25 trang 92 SBT hình học 10 timdapan.com"