Bài 5 trang 142 SGK Đại số và Giải tích 11

Giải bài 5 trang 142 SGK Đại số và Giải tích 11. Tính các giới hạn sau


Tính các giới hạn sau

LG a

\(\displaystyle\mathop {\lim }\limits_{x \to 2} {{x + 3} \over {{x^2} + x + 4}}\)

Phương pháp giải:

Hàm số xác định tại \(2\) nên \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)

Lời giải chi tiết:

\(\displaystyle \mathop {\lim }\limits_{x \to 2} {{x + 3} \over {{x^2} + x + 4}} = {{2 + 3} \over {{2^2} + 2 + 4}} = {1 \over 2}\)


LG b

\(\displaystyle\mathop {\lim }\limits_{x \to  - 3} {{{x^2} + 5x + 6} \over {{x^2} + 3x}}\)

Phương pháp giải:

Phân tích tử và mẫu thành nhân tử và rút gọn.

Lời giải chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to - 3} {{{x^2} + 5x + 6} \over {{x^2} + 3x}}\cr &= \mathop {\lim }\limits_{x \to - 3} {{(x + 2)(x + 3)} \over {x(x + 3)}} \cr&= \mathop {\lim }\limits_{x \to - 3} {{x + 2} \over x} \cr & = {{ - 3 + 2} \over { - 3}} = {1 \over 3} \cr} \)


LG c

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ - }} {{2x - 5} \over {x - 4}}\)

Phương pháp giải:

Đánh giá giới hạn dạng \(\dfrac{L}{0}\)

Lời giải chi tiết:

\(\displaystyle\mathop {\lim }\limits_{x \to {4^ - }} {{2x - 5} \over {x - 4}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {4^ - }} (2x - 5) =2.4-5= 3 > 0\)

và \(\left\{ \matrix{x - 4 < 0,\forall x < 4 \hfill \cr \mathop {\lim }\limits_{x \to  4^-} (x - 4) = 0 \hfill \cr} \right.\)

\(\displaystyle\Rightarrow \mathop {\lim }\limits_{x \to {4^ - }} {{2x - 5} \over {x - 4}} =  - \infty \)


LG d

\(\mathop {\lim }\limits_{x \to  + \infty } ( - {x^3} + {x^2} - 2x + 1)\)

Phương pháp giải:

Đặt \(x^3\) làm nhân tử chung.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  + \infty } ( - {x^3} + {x^2} - 2x + 1) \)

\(\displaystyle = \mathop {\lim }\limits_{x \to  + \infty } {x^3}( - 1 + {1 \over x} - {2 \over {{x^2}}} + {1 \over {{x^3}}})\)

 

Vì \(\mathop {\lim }\limits_{x \to  + \infty } {x^3} =  + \infty \) và \(\mathop {\lim }\limits_{x \to  + \infty } \left( { - 1 + \dfrac{1}{x} - \dfrac{2}{{{x^2}}} + \dfrac{1}{{{x^3}}}} \right) =  - 1 < 0\) nên

\(\mathop {\lim }\limits_{x \to  + \infty } ( - {x^3} + {x^2} - 2x + 1) \)\( =  - \infty \)


LG e

\(\displaystyle\mathop {\lim }\limits_{x \to  - \infty } {{x + 3} \over {3x - 1}}\)

Phương pháp giải:

Chia cả tử và mẫu cho \(x\).

Lời giải chi tiết:

\(\eqalign{& \mathop {\lim }\limits_{x \to - \infty } {{x + 3} \over {3x - 1}} = \mathop {\lim }\limits_{x \to - \infty } {{x(1 + {3 \over x})} \over {x(3 - {1 \over x})}} \cr & = \mathop {\lim }\limits_{x \to - \infty } {{1 + {3 \over x}} \over {3 - {1 \over x}}} \cr & = \dfrac{{1 + \mathop {\lim }\limits_{x \to  - \infty } \dfrac{3}{x}}}{{ - 3 - \mathop {\lim }\limits_{x \to  - \infty } \dfrac{1}{x}}} \cr &= \dfrac{{1 + 0}}{{ - 3 - 0}}= {1 \over 3} \cr} \)


LG f

\(\displaystyle \mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {{x^2} - 2x + 4}  - x} \over {3x - 1}}\)

Phương pháp giải:

Chia cả tử và mẫu cho \(x\).

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } {{\sqrt {{x^2} - 2x + 4} - x} \over {3x - 1}} \cr&= \mathop {\lim }\limits_{x \to - \infty } {{|x|\sqrt {1 - {2 \over x} + {4 \over {{x^2}}}} - x} \over {3x - 1}} \cr 
&= \mathop {\lim }\limits_{x \to - \infty } {{ - x\sqrt {1 - {2 \over x} + {4 \over {{x^2}}}} - x} \over {x(3 - {1 \over x})}}\cr& = \mathop {\lim }\limits_{x \to - \infty } {{ - \sqrt {1 - {2 \over x} + {4 \over {{x^2}}}} - 1} \over {3 - {1 \over x}}}  \cr &= \dfrac{{ - \sqrt {1 - 0 + 0}  - 1}}{{3 - 0}}= {{ - 2} \over 3} \cr} \).

 



Bài học liên quan

Từ khóa phổ biến