Bài 13 trang 144 SGK Đại số và Giải tích 11

Giải bài 13 trang 144 SGK Đại số và Giải tích 11. Cho hàm số:


Đề bài

Cho hàm số: \(f(x) = {{1 - {x^2}} \over x}\).

\(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right)\) bằng:

A. \(+∞\)                                  B. \(1\)

C. \(-∞\)                                  D. \(-1\)

Phương pháp giải - Xem chi tiết

Chia cả tử và mẫu của hàm số cho lũy thừa bậc cao nhất của \(x\) và tính giới hạn.

Lời giải chi tiết

Ta có:

\(\mathop {\lim }\limits_{x \to  - \infty } f(x) = \mathop {\lim }\limits_{x \to  - \infty } {{1 - {x^2}} \over x} = \lim {{{x^2}({1 \over {{x^2}}} - 1)} \over {{x^2}.{1 \over x}}} = \lim {{{1 \over {{x^2}}} - 1} \over {{1 \over x}}}\)

 Vì \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {{1 \over {{x^2}}} - 1} \right] =  - 1 < 0\)                       (1)

\(\mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x} = 0,\,\,x \to  - \infty  \Rightarrow \frac{1}{x} < 0\)              (2)

Từ (1) và (2) suy ra: \(\mathop {\lim }\limits_{x \to  - \infty } f(x)= +∞\)    

Chọn đáp án A.

 



Bài học liên quan

Từ khóa phổ biến