Bài 4 trang 107 SGK Đại số và Giải tích 11

Giải bài 4 trang 107 SGK Đại số và Giải tích 11. Cho hai cấp số nhân có cùng có các số hạng. Tính các số hạng tương ứng của chúng có lập thành cấp số nhân không? Vì sao? Cho một ví dụ minh họa.


Đề bài

Cho hai cấp số nhân có cùng số các số hạng. Tính các số hạng tương ứng của chúng có lập thành cấp số nhân không? Vì sao? Cho một ví dụ minh họa.

Phương pháp giải - Xem chi tiết

SHTQ của cấp số nhân: \({u_n} = {u_1}{q^{n - 1}}\) với \(u_1\) là số hạng đầu của CSN và \(q\) là công bội của CSN.

Lời giải chi tiết

Ta có \((a_n)\) là cấp số nhân và \((b_n)\) là cấp số nhân tương ứng.

Ta có:

\({a_n} = {\rm{ }}{a_1}.{\rm{ }}{q_1}^{n - 1},{\rm{ }}{q_1}\) là hằng số

\({b_n} = {\rm{ }}{b_1}.{\rm{ }}{q_2}^{n - 1},{\rm{ }}{q_2}\) là hằng số

Khi đó: \({a_n}.{b_n} = {\rm{ }} = {\rm{ }}{a_1}.{\rm{ }}{q_1}^{n - 1}.{\rm{ }}{b_1}.{\rm{ }}{q_2}^{n - 1} = {\rm{ }}({a_1}{b_1}){({q_1}{q_2})^{n - 1}}\)

Vậy dãy số \(a_nb_n\) là một cấp số nhân có công bội : \(q = q_1q_2\)

Ví dụ:

\(1, 2, 4 ,...\) là cấp số nhân có công bội \(q_1= 2\)

\(3, 9, 27, ...\) là cấp số nhân có công bội \(q_2= 3\)

Suy ra: \(3, 18, 108...\) là cấp số nhân có công bội: \(q = q_1q_2= 2.3 = 6\).

 



Bài học liên quan

Từ khóa phổ biến