Câu 2.132 trang 92 sách bài tập Giải tích 12 Nâng cao
Cho a > 3b > 0
Đề bài
Cho a > 3b > 0 và \({a^2} + 9{b^2} = 10ab\). Chứng minh rằng
\(\log (a - 3b) - log2 = {1 \over 2}(\log a + \log b)\).
Lời giải chi tiết
Từ \({a^2} + 9{b^2} = 10ab\) ta có \({(a - 3b)^2} = 4ab\). Lôgarit cớơ số 10 hai vế, ta được
\(log{(a - 3b)^2} = \log 4ab\)
\( \Leftrightarrow 2log(a - 3b) = \log 4 + \log ab\)
\( \Leftrightarrow log(a - 3b) - log2 \\= {1 \over 2}(\log a + \log b)\).
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 2.132 trang 92 sách bài tập Giải tích 12 Nâng cao timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 2.132 trang 92 sách bài tập Giải tích 12 Nâng cao timdapan.com"