Bài 1.40 trang 18 SBT Giải tích 12 Nâng cao

Giải bài 1.40 trang 18 sách bài tập Giải tích 12 Nâng cao. Xác định giao điểm I của hai đường tiệm cận của đường cong...


LG a

Xác định giao điểm I của hai đường tiệm cận của đường cong

\(y = {{x - 5} \over {2x + 3}}\)       (H)

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to  \pm \infty } y = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{x - 5}}{{2x + 3}} = \frac{1}{2}\)

Nên TCN: \(y = \frac{1}{2}\).

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - \frac{3}{2}} \right)}^ + }} y =  - \infty \\\mathop {\lim }\limits_{x \to {{\left( { - \frac{3}{2}} \right)}^ - }} y =  + \infty \end{array}\)

Nên TCĐ: \(x =  - \frac{3}{2}\).

Vậy \(I\left( { - {3 \over 2};{1 \over 2}} \right)\).


LG b

Viết công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) và viết phương trình của đường cong (H) đối với hệ tọa độ IXY.

Từ đó suy ra rằng I là tâm đối xứng của đường cong (H)

Lời giải chi tiết:

Công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) \(\left\{ \matrix{x = X - {3 \over 2} \hfill \cr y = Y + {1 \over 2} \hfill \cr}  \right.\)

Phương trình của đường cong (H) đối với hệ tọa độ IXY

\(\begin{array}{l}
Y + \frac{1}{2} = \frac{{X - \frac{3}{2} - 5}}{{2\left( {X - \frac{3}{2}} \right) + 3}}\\
\Leftrightarrow Y + \frac{1}{2} = \frac{{X - \frac{{13}}{2}}}{{2X}}\\
\Leftrightarrow Y = \frac{{X - \frac{{13}}{2}}}{{2X}} - \frac{1}{2}\\
\Leftrightarrow Y = \frac{{X - \frac{{13}}{2} - X}}{{2X}}\\
\Leftrightarrow Y = - \frac{{13}}{{4X}}
\end{array}\)

Hàm số là hàm lẻ nên đồ thị nhận I làm tâm đối xứng.



Bài học liên quan

Từ khóa phổ biến