Bài 6 trang 90 SGK Hình học 12

Giải bài 6 trang 90 SGK Hình học 12. Tính khoảng cách giữa đường thẳng ∆ với mặt phẳng (α) : 2x - 2y + z +3 = 0.


Đề bài

Tính khoảng cách giữa đường thẳng: \(\Delta :\left\{ \matrix{x = - 3 + 2t \hfill \cr y = - 1 + 3t \hfill \cr z = - 1 + 2t \hfill \cr} \right.\) với mặt phẳng \((α)\) : \(2x - 2y + z + 3 = 0\).

Phương pháp giải - Xem chi tiết

Chứng minh \(\Delta //\left( \alpha  \right)\) (\(\left\{ \begin{array}{l}{\overrightarrow u _\Delta } \bot {\overrightarrow n _{\left( \alpha \right)}}\\M \in \Delta ,\,\,M \notin \left( \alpha \right)\end{array} \right.\)).

Khi đó \(d\left( {\Delta ;\left( \alpha  \right)} \right) = d\left( {M;\left( \alpha  \right)} \right)\).

Công thức tính khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\) là: \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\)

Lời giải chi tiết

Đường thẳng \(\displaystyle ∆\) qua điểm \(\displaystyle M(-3 ; -1 ; -1)\) có vectơ chỉ phương  \(\displaystyle \overrightarrow u (2 ; 3 ; 2)\).

Mặt phẳng \(\displaystyle (α)\) có vectơ pháp tuyến \(\displaystyle \overrightarrow n (2 ; -2 ; 1)\).

Ta có \(\displaystyle M ∉ (α)\) và \(\displaystyle \overrightarrow u .\overrightarrow n = 0\) nên \(\displaystyle ∆ // (α)\).

Do vậy  \(\displaystyle d(∆,(α)) = d(M,(α))\)

= \(\displaystyle {{| - 6 + 2 - 1 + 3|} \over {\sqrt {4 + 4 + 1} }} = {2 \over 3}\).

Cách khác:

Có thể chứng minh \(\displaystyle d//\left( \alpha  \right)\) bằng cách:

Xét phương trình:

2(-3 + 2t) – 2(-1 + 3t) + (-1 + 2t) + 3 = 0

⇔ 0t – 2 = 0

Phương trình vô nghiệm

⇒ (Δ) // (α).



Từ khóa phổ biến