Bài 52 trang 101 SGK Đại số 10 nâng cao

Hệ phương trình sau có thể có nghiệm trong trường hợp nào?


Đề bài

Hệ phương trình dạng

có thể có nghiệm trong trường hợp nào?

Áp dụng: Tìm a để hệ có phương trình

\(\left\{ \matrix{
ax + y = {a^2} \hfill \cr 
x + ay = 1 \hfill \cr} \right.\) có nghiệm?

Lời giải chi tiết

Hệ đã cho có nghiệm khi có nghiệm duy nhất hoặc có vô số nghiệm.

+ Hệ có nghiệm duy nhất khi D ≠ 0

+ Hệ vô số nghiệm khi D = Dx = Dy = 0

Vậy hệ đã cho có nghiệm khi D ≠ 0 hoặc D = Dx = Dy = 0.

Áp dụng:

Ta có:

+ Nếu \(a ≠  ± 1\) hệ có nghiệm duy nhất

+ Nếu \(a = 1\) thì hệ có vô số nghiệm

+ Nếu \(a = -1\) thì hệ vô nghiệm (Do Dx = -2 ≠ 0)

Vậy hệ có nghiệm \(⇔ a ≠ -1\).

Cách trình bày khác:

Hệ có nghiệm duy nhất khi \(D \ne 0 \Leftrightarrow {a^2} - 1 \ne 0 \Leftrightarrow a \ne  \pm 1\)

Hệ vô số nghiệm khi

\(\begin{array}{l}D = {D_x} = {D_y} = 0\\ \Leftrightarrow \left\{ \begin{array}{l}{a^2} - 1 = 0\\{a^3} - 1 = 0\\a - {a^2} = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left( {a - 1} \right)\left( {a + 1} \right) = 0\\\left( {a - 1} \right)\left( {{a^2} + a + 1} \right) = 0\\a\left( {1 - a} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a = 1\\a =  - 1\end{array} \right.\\a = 1\\\left[ \begin{array}{l}a = 0\\a = 1\end{array} \right.\end{array} \right. \Leftrightarrow a = 1\end{array}\)

Do đó với \(\left[ \begin{array}{l}a \ne \pm 1\\a = 1\end{array} \right. \Leftrightarrow a \ne - 1\) thì hệ có nghiệm.



Bài học liên quan

Từ khóa phổ biến