Bài 32 trang 103 SGK Hình học 10 Nâng cao
Viết phương trình chính tắc của đường elip (E) trong mỗi trường hợp sau
Viết phương trình chính tắc của đường elip (E) trong mỗi trường hợp sau
a) (E) có độ dài trục lớn bằng 8 và tâm sai \(e = {{\sqrt 3 } \over 2};\)
b) (E) có độ dài trục bé bằng 8 và tiêu cự bằng 4;
c) (E) có một tiêu điểm là \(F(\sqrt 3 ;0)\) và đi qua điểm \(M\left( {1;{{\sqrt 3 } \over 2}} \right).\)
Giải
a) Ta có:
\(\eqalign{
& 2a = 8 \Leftrightarrow a = 4 \cr
& e = {c \over a} = {{\sqrt 3 } \over 2} \Rightarrow c = 2\sqrt 3 \cr
& {b^2} = {a^2} - {c^2} = 16 - 12 = 4 \cr} \)
Vậy \((E):{{{x^2}} \over {16}} + {{{y^2}} \over 4} = 1.\)
b) Ta có:
\(\eqalign{
& 2b = 8 \Leftrightarrow b = 4 \cr
& 2c = 4 \Leftrightarrow c = 2 \cr
& {a^2} = {b^2} + {c^2} = 16 + 4 = 20 \cr} \)
Vậy \((E):{{{x^2}} \over {20}} + {{{y^2}} \over {16}} = 1.\)
c) Ta có: \(c = \sqrt 3 \Rightarrow {a^2} - {b^2} = 3\)
Giả sử: \((E):{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)
\(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\) nên \({1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\)
Ta có hệ phương trình:
\(\eqalign{
& \left\{ \matrix{
{a^2} - {b^2} = 3 \hfill \cr
{1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
{1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
4{b^2} + 3{b^2} + 9 = 4{b^4} + 12{b^2} \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
{a^2} = {b^2} + 3 \hfill \cr
4{b^4} + 5{b^2} - 9 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
{b^2} = - {9 \over 4}\,(loai) \hfill \cr
{b^2} = 1 \Rightarrow {a^2} = 4 \hfill \cr} \right. \cr} \)
Vậy \((E):{{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 32 trang 103 SGK Hình học 10 Nâng cao timdapan.com"