Bài 3 trang 12 SGK Hình học 10

Giải bài 3 trang 12 SGK Hình học 10. Chứng minh rằng đối với tứ giác ABCD bất kì ta luôn có


Chứng minh rằng đối với tứ giác \(ABCD\) bất kì ta luôn có 

LG a

\(\overrightarrow{AB} + \overrightarrow{BC} +\overrightarrow{CD}+\overrightarrow{DA}= \overrightarrow{0}\);

Phương pháp giải:

Với quy tắc ba điểm tùy ý \(A, \, \, B, \, \, C\) ta luôn có:

\(+ )\;\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (quy tắc ba điểm).

\( + )\;\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \) (quy tắc trừ).

Lời giải chi tiết:

Theo quy tắc 3 điểm của tổng vec tơ, ta có

\(\overrightarrow{AB} +\overrightarrow{BC}= \overrightarrow{AC}\);      \(\overrightarrow{CD} + \overrightarrow{DA}= \overrightarrow{CA}\)

Như vậy

\(\overrightarrow{AB} + \overrightarrow{BC}+\overrightarrow{CD} +\overrightarrow{DA}\)\(= (  \overrightarrow{AB} + \overrightarrow{BC}) + (\overrightarrow{CD} + \overrightarrow{DA})\)\( = \overrightarrow{AC} + \overrightarrow{CA}\)

mà \(\overrightarrow{AC} +\overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}\).

Vậy  \(\overrightarrow{AB} + \overrightarrow{BC} +\overrightarrow{CD} +\overrightarrow{DA}= \overrightarrow{0}\)


LG b

\(\overrightarrow{AB}- \overrightarrow{AD} = \overrightarrow{CB}-\overrightarrow{CD}\).

Phương pháp giải:

Với quy tắc ba điểm tùy ý \(A, \, \, B, \, \, C\) ta luôn có:

\(+ )\;\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (quy tắc ba điểm).

\( + )\;\overrightarrow {AB}  - \overrightarrow {AC}  = \overrightarrow {CB} \) (quy tắc trừ).

Lời giải chi tiết:

Theo quy tắc 3 điểm của hiệu vec tơ, ta có 

                \(\overrightarrow{AB} - \overrightarrow{AD}= \overrightarrow{DB}\) (1)

                \(\overrightarrow{CB} - \overrightarrow{CD} = \overrightarrow{DB}\) (2)

Từ (1) và (2) suy ra \(\overrightarrow{AB} - \overrightarrow{AD}= \overrightarrow{CB} -\overrightarrow{CD}\).



Từ khóa phổ biến