Bài 19 trang 90 SGK Hình học 10 Nâng cao
Cho điểm M(2, 3) . Viết phương trình đường thẳng cắt hai trục tọa độ ở A và B sao cho là tam giác vuông cân tại đỉnh M.
Đề bài
Cho điểm M(2, 3) . Viết phương trình đường thẳng cắt hai trục tọa độ ở A và B sao cho là tam giác vuông cân tại đỉnh M.
Lời giải chi tiết
Giả sử \(A\left( {a;0} \right);B\left( {0;b} \right)\)
Ta có: \(\overrightarrow {MA} \left( {a - 2; - 3} \right);\overrightarrow {MB} \left( { - 2;b - 3} \right).\)
\(\Delta ABM\) vuông cân tại M
\(\eqalign{
& \Leftrightarrow \left\{ \matrix{
\overrightarrow {MA} .\overrightarrow {MB} = 0 \hfill \cr
MA = MB \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
- 2\left( {a - 2} \right) - 3\left( {b - 3} \right) = 0 \hfill \cr
{\left( {a - 2} \right)^2} + 9 = 4 + {\left( {b - 3} \right)^2} \hfill \cr} \right.\cr& \Leftrightarrow \left\{ \matrix{
2a + 3b = 13\,\,\,\left( 1 \right)\, \hfill \cr
{\left( {a - 2} \right)^2} + 5 = {\left( {b - 3} \right)^2}\,\,\,\left( 2 \right) \hfill \cr} \right. \cr} \)
Từ (1) suy ra \(b = {{13 - 2a} \over 3}\) thay vào (2) ta được:
\(\eqalign{
& {\left( {a - 2} \right)^2} + 5 = {\left( {{{13 - 2a} \over 3} - 3} \right)^2} \cr
& \Leftrightarrow {a^2} - 4a + 4 + 5 = {{{{\left( {4 - 2a} \right)}^2}} \over 9} \cr
& \Leftrightarrow 9{a^2} - 36a + 81 = 16 - 16a + 4{a^2} \cr
& \Leftrightarrow 5{a^2} - 20a + 65 = 0 \cr} \)
Phương trình vô nghiệm.
Vậy không tồn tại tam giác ABM vuông cân tại M.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 19 trang 90 SGK Hình học 10 Nâng cao timdapan.com"