Bài 11 trang 60 SGK Hình học 10

Giải bài 11 trang 60 SGK Hình học 10. Muốn đo chiều cao của tháp Chàm ..


Đề bài

Muốn đo chiều cao của tháp Chàm Por Klong Garai ở Ninh Thuận, người ta lấy hai điểm \(A\) và \(B\) trên mặt đất có khoảng cách \(AB = 12m\) cùng thẳng hàng với chân \(C\) của tháp để đặt hai giác kế. Chân của giác kế có chiều cao \(h = 1,3m\). Gọi \(D\) là đỉnh tháp và hai điểm \(A_1, \, B_1\) cùng thẳng  hàng với \(C_1\) thuộc chiều cao \(CD\) của tháp. Người ta đo được \(\widehat {D{A_1}{C_1}} = {49^0}\) và \(\widehat {D{B_1}{C_1}} = {35^0}.\) Tính chiều cao của  \(CD\) của tháp đó.

Phương pháp giải - Xem chi tiết

+) Sử dụng các công thức lượng giác của góc nhọn trong tam giác vuông.

Lời giải chi tiết

Ta có: \(A_1B_1=Ab=12m.\)

Xét \(\Delta DC_1A_1\) có: \(C_1A_1=C_1D.\cot 49^0\)

Xét \(\Delta DC_1B_1\) có: \(C_1B_1=C_1D.\cot 35^0\)

Mà \(A_1B_1=C_1B_1-C_1A_1\)\(=C_1D.\cot 35^0-C_1D.\cot 49^0\)

      \(=C_1D(\cot 35^0 - \cot 49^0).\)

\(\Rightarrow C_1D=\frac{A_1B_1}{\cot 35^0 - \cot 49^0}  =\frac{12}{\cot 35^0 - \cot 49^0}\)\(\approx 21,47 \, m. \)

Vậy chiều cao \(CD\) của tháp là: 

\(DC = 1,3 + 21,47= 22,77m.\)



Từ khóa phổ biến