Bài 1 trang 97 SGK Đại số và Giải tích 11
Giải bài 1 trang 97 SGK Đại số và Giải tích 11. Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tính số hạng đầu và công sai của nó:
Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tính số hạng đầu và công sai của nó:
LG a
\(u_n= 5 - 2n\)
Phương pháp giải:
Sử dụng định nghĩa cấp số cộng:
Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn) trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Ta chứng minh \({u_{n + 1}} - {u_n} = const\).
Lời giải chi tiết:
Với mọi \(n\in {\mathbb N}^*\) ta có:
\({u_{n + 1}} - {u_n} = 5 - 2\left( {n + 1} \right) - \left( {5 - 2n} \right) \)
\(= 5 - 2n - 2 - 5 + 2n = -2\)
LG b
\(u_n= \dfrac{n}{2}- 1\)
Phương pháp giải:
Sử dụng định nghĩa cấp số cộng:
Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn) trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Ta chứng minh \({u_{n + 1}} - {u_n} = const\).
Lời giải chi tiết:
LG c
\(u_n= 3^n\)
Phương pháp giải:
Sử dụng định nghĩa cấp số cộng:
Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn) trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Ta chứng minh \({u_{n + 1}} - {u_n} = const\).
Lời giải chi tiết:
LG d
\(u_n= \dfrac{7-3n}{2}\)
Phương pháp giải:
Sử dụng định nghĩa cấp số cộng:
Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn) trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Ta chứng minh \({u_{n + 1}} - {u_n} = const\).
Lời giải chi tiết:
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1 trang 97 SGK Đại số và Giải tích 11 timdapan.com"