Lý thuyết phương trình đường thẳng
Vectơ chỉ phương của đường thẳng
1. Vectơ chỉ phương của đường thẳng
Định nghĩa :
vectơ \(\vec{u}\) được gọi là vectơ chỉ phương của đường thẳng \(∆\) nếu \(\vec{u}\) ≠ \(\vec{0}\) và giá của \(\vec{u}\) song song hoặc trùng với \(∆\)
Nhận xét :
- Nếu \(\vec{u}\) là một vectơ chỉ phương của đường thẳng \(∆\) thì \(k\vec{u} ( k≠ 0)\) cũng là một vectơ chỉ phương của \(∆\) , do đó một đường thẳng có vô số vectơ chỉ phương.
- Một đường thẳng hoàn toàn được xác định nếu biết môt điểm và một vectơ chỉ phương của đường thẳng đó.
2. Phương trình tham số của đường thẳng
- Phương trình tham số của đường thẳng \(∆\) đi qua điểm \(M_0(x_0 ;y_0)\) và nhận vectơ \(\vec{u} = (u_1; u_2)\) làm vectơ chỉ phương là :
\(∆\) : \(\left\{\begin{matrix} x= x_{0}+tu_{1}& \\ y= y_{0}+tu_{2}& \end{matrix}\right.\)
-Khi hệ số \(u_1≠ 0\) thì tỉ số \(k= \frac{u_{1}}{u_{2}}\) được gọi là hệ số góc của đường thẳng.
Từ đây, ta có phương trình đường thẳng \(∆\) đi qua điểm \(M_0(x_0 ;y_0)\) và có hệ số góc k là:
\(y – y_0 = k(x – x_0)\)
Chú ý: Ta đã biết hệ số góc \(k = \tan α\) với góc \(α\) là góc của đường thẳng \(∆\) hợp với chiều dương của trục \(Ox\)
3. Vectơ pháp tuyến của đường thẳng
Định nghĩa: Vectơ \(\vec{n}\) được gọi là vec tơ pháp tuyến của đường thẳng \(∆\) nếu \(\vec{n}\) ≠ \(\vec{0}\) và \(\vec{n}\) vuông góc với vectơ chỉ phương của \(∆\)
Nhận xét:
- Nếu \(\vec{n}\) là một vectơ pháp tuyến của đường thẳng \(∆\) thì k\(\vec{n}\) \((k ≠ 0)\) cũng là một vectơ pháp tuyến của \(∆\), do đó một đường thẳng có vô số vec tơ pháp tuyến.
- Một đường thẳng được hoàn toàn xác định nếu biết một và một vectơ pháp tuyến của nó.
4. Phương trình tổng quát của đường thẳng
Định nghĩa: Phương trình \(ax + by + c = 0\) với \(a\) và \(b\) không đồng thời bằng \(0\), được gọi là phương trinh tổng quát của đường thẳng.
Trường hợp đặc biết:
+ Nếu \(a = 0 => y = \frac{-c}{b}; ∆ // Ox\)
+ Nếu \(b = 0 => x = \frac{-c}{a}; ∆ // Oy\)
+ Nếu \(c = 0 => ax + by = 0 => ∆\) đi qua gốc tọa độ
+ Nếu \(∆\) cắt \(Ox\) tại \((a; 0)\) và \(Oy\) tại \(B (0; b)\) thì ta có phương trình đường thẳng \(∆\) theo đoạn chắn:
\(\frac{x}{a} + \frac{y}{b} = 1\)
5. Vị trí tương đối của hai đường thẳng
Xét hai đường thẳng ∆1 và ∆2
có phương trình tổng quát lần lượt là :
a1x+b1y + c1 = 0 và a 2+ b2y +c2 = 0
Điểm \(M_0(x_0 ;y_0)\)) là điểm chung của ∆1 và ∆2 khi và chỉ khi \((x_0 ;y_0)\) là nghiệm của hệ hai phương trình:
(1) \(\left\{\begin{matrix} a_{1}x+b_{1}y +c_{1} = 0& \\ a_{2}x+b_{2y}+c_{2}= 0& \end{matrix}\right.\)
Ta có các trường hợp sau:
a) Hệ (1) có một nghiệm: ∆1 cắt ∆2
b) Hệ (1) vô nghiệm: ∆1 // ∆2
c) Hệ (1) có vô số nghiệm: ∆1 = ∆2
6.Góc giữa hai đường thẳng
Hai đường thẳng ∆1 và ∆2 cắt nhau tạo thành 4 góc. Nếu ∆1 không vuông góc với ∆2thì góc nhọn trong số bốn góc đó được gọi là góc giữa hai đường thẳng ∆1 và ∆2. Nếu ∆1 vuông góc với ∆2 thì ta nói góc giữa ∆1 và ∆2bằng 900 .Trường hợp ∆1 và ∆2 song song hoặc trùng nhau thì ta quy ước góc giữa ∆1 và ∆2 bằng 00. Như vậy gương giữa hai đường thẳng luôn bé hơn hoặc bằng 900
Góc giữa hai đường thẳng ∆1 và ∆2 được kí hiệu là \(\widehat{\Delta _{1},\Delta _{2}}\)
Cho hai đường thẳng ∆1 = a1x+b1y + c1 = 0
∆2 = a 2+ b2y +c2 = 00
Đặt \(\varphi\) = \(\widehat{\Delta _{1},\Delta _{2}}\)
\(\cos \varphi\) = \(\frac{|a_{1}.a_{2}+b_{1}.b_{2}|}{\sqrt{{a_{1}}^{2}+{b_{1}}^{2}}\sqrt{{a_{2}}^{2}+{b_{2}}^{2}}}\)
Chú ý:
+ \({\Delta _1} \bot {\Delta _2} \Leftrightarrow {n_1} \bot {n_2} \Leftrightarrow {a_1}.{a_2} + {b_1}.{b_2} = 0\)
+ Nếu \({\Delta _1}\) và \({\Delta _2}\) có phương trình y = k1 x + m1 và y = k2 x + m2 thì
\({\Delta _1} \bot {\Delta _2} \Leftrightarrow {k_1}.{k_2} = - 1\)
7.Công thức tính khoảng cách từ một điểm đến một đường thẳng
Trong mặt phẳng \(Oxy\) cho đường thẳng \(∆\) có phương trình \(ax+by+c-0\) và điểm \(M_0(x_0 ;y_0)\)).Khoảng cách từ điểm \(M_0\) đến đường thẳng \(∆\) kí hiệu là \((M_0,∆)\), được tính bởi công thức
\(d(M_0,∆)=\frac{|ax_{0}+by_{0}+c|}{\sqrt{a^{2}+b^{2}}}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Lý thuyết phương trình đường thẳng timdapan.com"