Giải mục 1 trang 60 SGK Toán 11 tập 2 - Cánh Diều

Tính vận tốc tức thời của viên bi tại thời điểm ({x_0} = 1s) trong bài toán tìm vận tốc tức thời


Hoạt động 1

Tính vận tốc tức thời của viên bi tại thời điểm \({x_0} = 1s\) trong bài toán tìm vận tốc tức thời

Phương pháp giải:

Dựa vào công thức đã cho ở bài toán tìm vận tốc để tính

Lời giải chi tiết:

\(\begin{array}{l}v({x_0}) = \mathop {\lim }\limits_{{x_1} \to {x_0}} \frac{{f({x_1}) - f({x_0})}}{{{x_1} - {x_0}}} = \mathop {\lim }\limits_{{x_1} \to 1} \frac{{f({x_1}) - f(1)}}{{{x_1} - 1}} = \mathop {\lim }\limits_{{x_1} \to 1} \frac{{\frac{1}{2}g{x_1} - \frac{1}{2}g}}{{{x_1} - 1}}\\ = \mathop {\lim }\limits_{{x_1} \to 1} \frac{{\frac{1}{2}g({x_1} - 1)}}{{{x_1} - 1}} = \frac{1}{2}g \approx \frac{1}{2}.9,8 \approx 4,9\,\,\,(m/s)\end{array}\)


Luyện tập – Vận dụng 1

Tính đạo hàm của hàm số \(f\left( x \right) = 2x\)tại \({x_0} = 3\) bằng định nghĩa

Phương pháp giải:

Dựa vào ví dụ 1 để làm

Lời giải chi tiết:

Xét \(\Delta x\)là số gia của biến số tại điểm \({x_0} = 3\)

Ta có:

\(\begin{array}{l}\Delta y = f\left( {3 + \Delta x} \right) - f\left( 3 \right) = 2.\left( {3 + \Delta x} \right) - 2.3 = 2\Delta x\\ \Rightarrow \frac{{\Delta y}}{{\Delta x}} = 2\end{array}\)

Ta thấy:

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( 2 \right) = 2\\ \Rightarrow f'\left( 3 \right) = 2\end{array}\)


Luyện tập – Vận dụng 2

Tính đạo hàm của hàm số \(f\left( x \right) = {x^3}\) tại điểm x bất kì bằng định nghĩa

Phương pháp giải:

Dựa vào ví dụ 2 để làm

Lời giải chi tiết:

Xét \(\Delta x\) là số gia của biến số tại điểm x

Ta có:

\(\begin{array}{l}\Delta y = f\left( {x + \Delta x} \right) - f\left( x \right) = {\left( {x + \Delta x} \right)^3} - {x^3} = \left( {x + \Delta x - x} \right)\left[ {x{{\left( {x + \Delta x} \right)}^2} + x.\left( {x + \Delta x} \right) + {x^2}} \right]\\ = \Delta x\left( {{x^2} + 2x.\Delta x + {{\left( {\Delta x} \right)}^2} + {x^2} + x.\Delta x + {x^2}} \right) = \Delta x.\left( {3{x^2} + {{\left( {\Delta x} \right)}^2} + 3x.\Delta x} \right)\\ \Rightarrow \frac{{\Delta y}}{{\Delta x}} = 3{x^2} + {\left( {\Delta x} \right)^2} + 3x.\Delta x\end{array}\)

Ta thấy:

\(\begin{array}{l}\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {3{x^2} + {{\left( {\Delta x} \right)}^2} + 3x.\Delta x} \right) = 3{x^2}\\ \Rightarrow f'\left( x \right) = 3{x^2}\end{array}\)



Từ khóa phổ biến