Bài tập trắc nghiệm trang 218, 219 SBT đại số và giải tích 11
Giải bài tập trắc nghiệm trang 218, 219 sách bài tập đại số và giải tích 11
Chọn đáp án đúng:
5.124
Đạo hàm của hàm số y = x3 - 2x2 + x + 1 tại x = 0 bằng
A. 1 B. 0 C. 2 D. -2
Lời giải chi tiết:
\(\begin{array}{l}y' = 3{x^2} - 4x + 1\\y'\left( 0 \right) = 3.0 - 4.0 + 1 = 1\end{array}\)
Chọn đáp án: A
5.125
Hàm số \(y = \left\{ \begin{array}{l}2x\,voi\,x \ge 0\\ - 3x\,voi\,x < 0\end{array} \right.\) không có đạo hàm tại
A. x = 2 B. x = 1
C. x = 0 D. x = -1
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{y\left( x \right) - y\left( 0 \right)}}{{x - 0}}= \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{2x - 0}}{{x - 0}} = 2\\\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{y\left( x \right) - y\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{ - 3x - 0}}{{x - 0}} = - 3\end{array}\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{y\left( x \right) - y\left( 0 \right)}}{{x - 0}}\) \( \ne \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{y\left( x \right) - y\left( 0 \right)}}{{x - 0}}\)
\( \Rightarrow \) Hàm số không có đạo hàm tại \(x = 0\).
Chọn đáp án: C
5.126
Phương trình tiếp tuyến với đồ thị của hàm số y = x3 + 1 tại x = -1 là
A. y = 3x + 2 B. y = 3x - 2
C. y = 3x + 4 D. y = 3x + 3
Lời giải chi tiết:
Ta có: \(y' = 3{x^2}\) \( \Rightarrow y'\left( { - 1} \right) = 3\)
\({x_0} = - 1 \Rightarrow y\left( { - 1} \right) = 0\)
Phương trình tiếp tuyến \(y = 3\left( {x + 1} \right) + 0\) hay \(y = 3x + 3\).
Chọn đáp án: D
5.127
Đạo hàm của hàm số \(y = \dfrac{{2x}}{{\sin x}}\) là
Lời giải chi tiết:
\(\begin{array}{l}y' = \dfrac{{\left( {2x} \right)'\sin x - 2x\left( {\sin x} \right)'}}{{{{\sin }^2}x}}\\ = \dfrac{{2\sin x - 2x\cos x}}{{{{\sin }^2}x}}\\ = \dfrac{{2\sin x}}{{{{\sin }^2}x}} - \dfrac{{2x\cos x}}{{{{\sin }^2}x}}\\ = \dfrac{2}{{\sin x}} - \dfrac{{2x\cot x}}{{\sin x}}\\ = \dfrac{{2 - 2x\cot x}}{{\sin x}}\\ = \dfrac{{2\left( {1 - x\cot x} \right)}}{{\sin x}}\end{array}\)
Chọn đáp án: B
5.128
Cho f(x) = x3/3 - 2x2 + m2x - 5. Tìm tham số m để f'(x) > 0 với mọi x ∈ R
A. m > 2 B. m > 2 hoặc m < -2
C. m < -2 D. m ∈ R
Lời giải chi tiết:
\(f'\left( x \right) = {x^2} - 4x + {m^2}\) có \(\Delta ' = 4 - {m^2}\)
Để \(f'\left( x \right) > 0,\forall x \in \mathbb{R}\) thì \(\left\{ \begin{array}{l}a = 1 > 0\\\Delta ' = 4 - {m^2} < 0\end{array} \right.\) \( \Leftrightarrow 4 - {m^2} < 0\) \( \Leftrightarrow \left[ \begin{array}{l}m > 2\\m < - 2\end{array} \right.\)
Chọn đáp án: B
5.129
Cho f(x) = tan(2x3 - 5). Tìm f'(x)
Lời giải chi tiết:
\(\begin{array}{l}f'\left( x \right)\\ = \left( {2{x^3} - 5} \right)'.\dfrac{1}{{{{\cos }^2}\left( {2{x^3} - 5} \right)}}\\ = 2.3{x^2}.\dfrac{1}{{{{\cos }^2}\left( {2{x^3} - 5} \right)}}\\ = \dfrac{{6{x^2}}}{{{{\cos }^2}\left( {2{x^3} - 5} \right)}}\end{array}\)
Chọn đáp án: D
5.130
Tìm nghiệm của phương trình f''(x) = 0 biết f(x) = 3cosx - √3sinx
A. x = π/6 + kπ B. x = π/4 + kπ
C. x = π/3 + kπ D. x = kπ
Phương pháp giải:
HD: Tính f’’(x) rồi giải phương trình tanx = √3.
Lời giải chi tiết:
\(\begin{array}{l}f'\left( x \right) = - 3\sin x - \sqrt 3 \cos x\\f''\left( x \right) = - 3\cos x + \sqrt 3 \sin x\\f''\left( x \right) = 0\\ \Leftrightarrow - 3\cos x + \sqrt 3 \sin x = 0\\ \Leftrightarrow \sqrt 3 \sin x = 3\cos x\\ \Leftrightarrow \sin x = \sqrt 3 \cos x\\ \Leftrightarrow \dfrac{{\sin x}}{{\cos x}} = \sqrt 3 \\ \Leftrightarrow \tan x = \sqrt 3 = \tan \dfrac{\pi }{3}\\ \Leftrightarrow x = \dfrac{\pi }{3} + k\pi ,k \in \mathbb{Z}\end{array}\)
Chọn đáp án: C
5.131
Cho y = tan3x. Tìm dy
Lời giải chi tiết:
\(\begin{array}{l}y' = 3{\tan ^2}x\left( {\tan x} \right)'\\ = 3{\tan ^2}x.\dfrac{1}{{{{\cos }^2}x}}\\ = 3.\dfrac{{{{\sin }^2}x}}{{{{\cos }^2}x}}.\dfrac{1}{{{{\cos }^2}x}}\\ = \dfrac{{3{{\sin }^2}x}}{{{{\cos }^4}x}}\\ \Rightarrow dy = y'dx = \dfrac{{3{{\sin }^2}x}}{{{{\cos }^4}x}}dx\end{array}\)
Chọn đáp án: A
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài tập trắc nghiệm trang 218, 219 SBT đại số và giải tích 11 timdapan.com"