Bài 5.123 trang 218 SBT đại số và giải tích 11
Giải bài 5.123 trang 218 sách bài tập đại số và giải tích 11. Chứng minh rằng...
Đề bài
Chứng minh rằng nếu hàm số \(f\left( z \right)\) có đạo hàm đến cấp n thì
\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( n \right)} = {a^n}f_z^{\left( n \right)}\left( {ax + b} \right).\)
Phương pháp giải - Xem chi tiết
HD: Chứng minh bằng quy nạp.
Lời giải chi tiết
Với \(n = 1\) ta có:
\(\begin{array}{l}{\left[ {f\left( {ax + b} \right)} \right]_x}'\\ = \left( {ax + b} \right)'{f_z}'\left( {ax + b} \right)\\ = a{f_z}'\left( {ax + b} \right)\end{array}\)
Nên (*) đúng.
Giả sử (*) đúng với \(n = k\), nghĩa là
\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( k \right)} = {a^k}f_z^{\left( k \right)}\left( {ax + b} \right)\)
Ta chứng minh (*) đúng với \(n = k + 1\), nghĩa là:
\(\left[ {f\left( {ax + b} \right)} \right]_x^{\left( {k + 1} \right)} = {a^{k + 1}}f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\)
Thật vậy,
\(\begin{array}{l}\left[ {f\left( {ax + b} \right)} \right]_x^{\left( {k + 1} \right)}\\ = \left\{ {\left[ {f\left( {ax + b} \right)} \right]_x^{\left( k \right)}} \right\}'\\ = \left[ {{a^k}f_z^{\left( k \right)}\left( {ax + b} \right)} \right]'\\ = {a^k}.\left[ {f_z^{\left( k \right)}\left( {ax + b} \right)} \right]'\\ = {a^k}.\left( {ax + b} \right)'.f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\\ = {a^k}.a.f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\\ = {a^{k + 1}}f_z^{\left( {k + 1} \right)}\left( {ax + b} \right)\end{array}\)
Suy ra đpcm.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 5.123 trang 218 SBT đại số và giải tích 11 timdapan.com"