Bài 5.114 trang 217 SBT đại số và giải tích 11
Giải bài 5.114 trang 217 sách bài tập đại số và giải tích 11. Tìm đạo hàm của hàm số tại điểm đã chỉ ra :...
Tìm đạo hàm của hàm số tại điểm đã chỉ ra
LG a
\(f\left( x \right) = {{\sqrt {x + 1} } \over {\sqrt {x + 1} + 1}},\,\,f'\left( 0 \right) = ?\)
Phương pháp giải:
Tính đạo hàm và thay các giá trị ở đề bài vào tính toán.
Lời giải chi tiết:
\(\begin{array}{l}
f\left( x \right) = \dfrac{{\sqrt {x + 1} }}{{\sqrt {x + 1} + 1}}\\
= \dfrac{{\sqrt {x + 1} + 1 - 1}}{{\sqrt {x + 1} + 1}}\\
= \dfrac{{\sqrt {x + 1} + 1}}{{\sqrt {x + 1} + 1}} - \dfrac{1}{{\sqrt {x + 1} + 1}}\\
= 1 - \dfrac{1}{{\sqrt {x + 1} + 1}}\\
f'\left( x \right) =0 - \dfrac{{ - \left( {\sqrt {x + 1} + 1} \right)'}}{{{{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
= \dfrac{{\dfrac{{\left( {x + 1} \right)'}}{{2\sqrt {x + 1} }}}}{{{{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
= \dfrac{1}{{2\sqrt {x + 1} {{\left( {\sqrt {x + 1} + 1} \right)}^2}}}\\
\Rightarrow f'\left( 0 \right) = \dfrac{1}{{2\sqrt 1 {{\left( {\sqrt 1 + 1} \right)}^2}}} = \dfrac{1}{8}
\end{array}\)
LG b
\(y = {\left( {4x + 5} \right)^2},\,y'\left( 0 \right) = ?\)
Lời giải chi tiết:
\(\begin{array}{l}
y' = 2\left( {4x + 5} \right)\left( {4x + 5} \right)'\\
= 2\left( {4x + 5} \right).4\\
= 8\left( {4x + 5} \right)\\
\Rightarrow y'\left( 0 \right) = 8.\left( {4.0 + 5} \right) = 40
\end{array}\)
LG c
\(g\left( x \right) = \sin 4x\cos 4x,\,g'\left( {{\pi \over 3}} \right) = ?\)
Lời giải chi tiết:
\(\begin{array}{l}
g\left( x \right) = \sin 4x\cos 4x\\
= \dfrac{1}{2}.2\sin 4x\cos 4x\\
= \dfrac{1}{2}\sin 8x\\
g'\left( x \right) = \dfrac{1}{2}.8\cos 8x = 4\cos 8x\\
g'\left( {\dfrac{\pi }{3}} \right) = 4\cos \dfrac{{8\pi }}{3} = - 2
\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 5.114 trang 217 SBT đại số và giải tích 11 timdapan.com"