Bài 5.113 trang 217 SBT đại số và giải tích 11

Giải bài 5.113 trang 217 sách bài tập đại số và giải tích 11. Giải phương trình...


Giải phương trình \(f'\left( x \right) = g\left( x \right),\) biết rằng

LG a

\(f\left( x \right) = {{1 - \cos 3x} \over 3};g\left( x \right) = \left( {\cos 6x - 1} \right)\cot 3x.\)

Phương pháp giải:

Tính đạo hàm \(f'(x)\) và giải phương trình

Lời giải chi tiết:

\(f\left( x \right) = {{1 - \cos 3x} \over 3} \Rightarrow f'\left( x \right) = \sin 3x.\) Ta có

\(f'\left( x \right) = g\left( x \right) \Leftrightarrow \left( {\cos 6x - 1} \right).\cot 3x = \sin 3x\) (điều kiện: \(\sin 3x \ne 0 \Leftrightarrow \cos 3x \ne  \pm 1\) )

\(\eqalign{
& \Leftrightarrow \left( {\cos 6x - 1} \right).\cos 3x = {\sin ^2}3x \cr 
& \Leftrightarrow \left( {1 - 2{{\sin }^2}3x - 1} \right).\cos 3x = {\sin ^2}3x \cr 
& \Leftrightarrow {\sin ^2}3x.\left( {2\cos 3x + 1} \right) = 0 \cr 
& \Leftrightarrow \cos 3x = - {1 \over 2}{\rm{ }}\left( {{\rm{vì}}\,\,\sin 3x \ne 0{\rm{ }}} \right) \cr 
& \Leftrightarrow \cos 3x = \cos {{2\pi } \over 3} \cr 
& \Leftrightarrow 3x = \pm {{2\pi } \over 3} + k2\pi \cr 
& \Leftrightarrow x = \pm {{2\pi } \over 9} + k{{2\pi } \over 3}{\rm{ }}\left( {k \in Z} \right). \cr} \)


LG b

\(f\left( x \right) = {1 \over 2}\cos 2x;g\left( x \right) = 1 - {\left( {\cos 3x + \sin 3x} \right)^2}.\)

Phương pháp giải:

Tính đạo hàm \(f'(x)\) và giải phương trình.

Lời giải chi tiết:

\(f\left( x \right) = {1 \over 2}\cos 2x \Rightarrow f'\left( x \right) =  - \sin 2x.\) Ta có

\(\eqalign{
& f'\left( x \right) = g\left( x \right) \cr 
& \Leftrightarrow - \sin 2x = 1 - {\left( {\cos 3x + \sin 3x} \right)^2} \cr 
& \Leftrightarrow 1 + \sin 2x = {\left( {\cos 3x + \sin 3x} \right)^2} \cr 
& \Leftrightarrow 1 + \sin 2x = 1 + 2\sin 3x\cos 3x \cr 
& \Leftrightarrow \sin 6x - \sin 2x = 0 \cr 
& \Leftrightarrow 2\cos 4x\sin 2x = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos 4x = 0 \hfill \cr 
\sin 2x = 0 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
4x = {\pi \over 2} + k\pi \hfill \cr 
2x = n\pi \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = {\pi \over 8} + k{\pi \over 4} \hfill \cr 
x = n{\pi \over 2} \hfill \cr} \right.\left( {k,n \in Z} \right). \cr}\)


LG c

\(f\left( x \right) = {1 \over 2}\sin 2x + 5\cos x;g\left( x \right) = 3{\sin ^2}x + {3 \over {1 + {{\tan }^2}x}}.\)

Phương pháp giải:

Tính đạo hàm \(f'(x)\) và giải phương trình.

Lời giải chi tiết:

\(f\left( x \right) = {1 \over 2}\sin 2x + 5\cos x \Rightarrow f'\left( x \right) = \cos 2x - 5\sin x.\) Ta có

\(\eqalign{
& f'\left( x \right) = g\left( x \right) \cr 
& \Leftrightarrow \cos 2x - 5\sin x = 3{\sin ^2}x + {3 \over {1 + {{\tan }^2}x}} \cr 
& \Leftrightarrow 5\sin x + {3 \over {1 + {{\tan }^2}x}} = \cos 2x - 3{\sin ^2}x \cr 
& \Leftrightarrow 5\sin x + 3{\cos ^2}x = {\cos ^2}x - 4{\sin ^2}x \cr 
& \Leftrightarrow 5\sin x = - 2{\cos ^2}x - 4{\sin ^2}x \cr 
& \Leftrightarrow 5\sin x = - 2 - 2{\sin ^2}x \cr 
& \Leftrightarrow 2{\sin ^2}x + 5\sin x + 2 = 0. \cr} \)

Đặt \(t = \sin x,t \in \left[ { - 1;1} \right],\) ta có phương trình \(2{t^2} + 5t + 2 = 0.\)

Giải phương trình \(t =  - {1 \over 2}\) ta được (loại t = -2 ).

\(\eqalign{
& \sin x = - {1 \over 2} \cr 
& \Leftrightarrow \sin x = \sin \left( { - {\pi \over 6}} \right) \cr 
& \Leftrightarrow \left[ \matrix{
x = - {\pi \over 6} + k2\pi \hfill \cr 
x = {{7\pi } \over 6} + k2\pi \hfill \cr} \right.\left( {k \in Z} \right). \cr} \)

Bài giải tiếp theo
Bài 5.114 trang 217 SBT đại số và giải tích 11
Bài 5.115 trang 217 SBT đại số và giải tích 11
Bài 5.116 trang 217 SBT đại số và giải tích 11
Bài 5.117 trang 217 SBT đại số và giải tích 11
Bài 5.118 trang 217 SBT đại số và giải tích 11
Bài 5.119 trang 218 SBT đại số và giải tích 11
Bài 5.120 trang 218 SBT đại số và giải tích 11
Bài 5.121 trang 218 SBT đại số và giải tích 11
Bài 5.122 trang 218 SBT đại số và giải tích 11
Bài 5.123 trang 218 SBT đại số và giải tích 11

Video liên quan



Từ khóa