Giải bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {CC'} \); b) \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow 0 \); c) \(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = \overrightarrow {A'C} \)
Đề bài
Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {CC'} \);
b) \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow 0 \);
c) \(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = \overrightarrow {A'C} \)
Phương pháp giải - Xem chi tiết
a, b) Sử dụng kiến thức về quy tắc ba điểm để chứng minh: Nếu A, B, C là ba điểm bất kì thì \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
c) Sử dụng quy tắc hình bình hành để chứng minh: Nếu ABCD là hình bình hành thì \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
Lời giải chi tiết
a) Vì ABCD là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {DC} \)
Vì CDD’C’ là hình bình hành nên \(\overrightarrow {C'D'} = \overrightarrow {CD} ,\overrightarrow {DD'} = \overrightarrow {CC'} \)
Ta có: \(\overrightarrow {AB} + \overrightarrow {DD'} + \overrightarrow {C'D'} = \overrightarrow {DC} + \overrightarrow {CC'} + \overrightarrow {CD} = \left( {\overrightarrow {CD} + \overrightarrow {DC} } \right) + \overrightarrow {CC'} = \overrightarrow {CC'} \)
b) Ta có: \(\overrightarrow {AB} + \overrightarrow {CD'} - \overrightarrow {CC'} = \overrightarrow {AB} + \overrightarrow {C'D'} = \overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow 0 \)
c) Vì ABCD là hình bình hành nên \(\overrightarrow {CB} + \overrightarrow {CD} = \overrightarrow {CA} \)
Vì A’ACC’ là hình bình hành nên \(\overrightarrow {CA} + \overrightarrow {CC'} = \overrightarrow {CA'} \)
\(\overrightarrow {BC} - \overrightarrow {CC'} + \overrightarrow {DC} = - \left( {\overrightarrow {CB} + \overrightarrow {CD} } \right) - \overrightarrow {CC'} = - \overrightarrow {CA} - \overrightarrow {CC'} = - \left( {\overrightarrow {CA} + \overrightarrow {CC'} } \right) = - \overrightarrow {CA'} = \overrightarrow {A'C} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài tập 2.4 trang 58 SGK Toán 12 tập 1 - Kết nối tri thức timdapan.com"